Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24050098-6    https://doi.org/10.11896/cldb.24050098
  金属与金属基复合材料 |
水冷介质对铜铝异种金属薄板搅拌摩擦焊焊缝性能的影响
杨瑞琛, 王进*, 高波, 张帅, 张新月
青岛理工大学机械与汽车工程学院,山东 青岛 266520
Influence of Water-cooling Medium on Weld Properties of Friction Stir Welded Copper-Aluminum Dissimilar Metal Thin Sheets
YANG Ruichen, WANG Jin*, GAO Bo, ZHANG Shuai, ZHANG Xinyue
School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China
下载:  全 文 ( PDF ) ( 39095KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用搅拌摩擦焊方法,在1 600~2 000 r/min转速下对2 mm厚的6061铝合金薄板和T2紫铜薄板进行空气和水下焊接,探究两种焊接环境对焊缝微观结构和力学性能的影响。结果表明,水下焊接显著减少了表面飞边,同时几乎无粘刀现象,铜铝混合界面更为复杂。在转速为1 600、1 800 r/min时,焊缝呈现出独特的碗状形貌,铜颗粒尺寸增大,金属间化合物层厚显著减薄,焊核区硬度显著提高。在2 000 r/min转速下,接头最大抗拉强度达到135 MPa,约为在同转速下空气中焊接的1.7倍。与空气中焊接相比,水下焊接显著增强了界面处的机械互锁程度,虽未改变其产生的金属间化合物的种类,但有效抑制了金属间化合物的生成,从而改善焊接接头的组织结构和力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨瑞琛
王进
高波
张帅
张新月
关键词:  水下搅拌摩擦焊接  铜/铝异种接头  搅拌针转速  金属间化合物  力学性能    
Abstract: Friction stir welding was employed to join 2 mm thick 6061 aluminum alloy and T2 copper sheets at rotation speeds ranging from 1 600 r/min to 2 000 r/min under both air and underwater conditions. Then the effects of these two welding environments on the microstructure and mechanical properties of the welds were investigated. The results showed that underwater welding significantly reduced surface flash and almost eliminated tool sticking, leading to a more complex copper-aluminum interface. At rotation speeds of 1 600 r/min and 1 800 r/min, the weld exhibited a unique bowl-shaped morphology, with an increase in copper particle size and a significant reduction in the thickness of the intermetallic compounds layer, as well as a marked increase in hardness in the weld nugget area. At a rotation speed of 2 000 r/min, the maximum tensile strength of the joint reached 135 MPa, approximately 1.7 times that of air welding at the same speed. Compared to air welding, underwater wel-ding significantly enhance the mechanical interlocking at the interface, effectively suppress the formation of intermetallic compounds, although it can not alter the types of intermetallic compounds produced, thereby improving the microstructure and mechanical properties of the welded joint.
Key words:  underwater friction stir welding    copper/aluminum dissimilar joint    stirring pin rotation speed    intermetallic compound    mechanical property
发布日期:  2025-08-28
ZTFLH:  TG456  
基金资助: 山东省重点研发计划(2019GGX102023);国家自然科学基金青年基金(523010090);山东省自然科学基金青年基金(ZR2023QE275)
通讯作者:  *王进,博士,教授,硕士研究生导师。主要研究方向为材料成形理论与工艺 、材料表面工程、复杂工程问题数值模拟。wangjin@qut.edu.cn   
作者简介:  杨瑞琛,青岛理工大学机械与汽车工程学院硕士研究生,目前主要研究领域为搅拌摩擦焊。
引用本文:    
杨瑞琛, 王进, 高波, 张帅, 张新月. 水冷介质对铜铝异种金属薄板搅拌摩擦焊焊缝性能的影响[J]. 材料导报, 2025, 39(17): 24050098-6.
YANG Ruichen, WANG Jin, GAO Bo, ZHANG Shuai, ZHANG Xinyue. Influence of Water-cooling Medium on Weld Properties of Friction Stir Welded Copper-Aluminum Dissimilar Metal Thin Sheets. Materials Reports, 2025, 39(17): 24050098-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050098  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24050098
1 Sadeghian A, Iqbal N. Optics & Laser Technology, 2022, 146, 107595.
2 Yan S, Li Z, Song L, et al. Optics and Lasers in Engineering, 2023, 161, 107312.
3 Bakkiyaraj M, Bernard S S, Saikrishnan G, et al. Materials Today, Proceedings, 2021, 43, 824.
4 Kalinenko A, Kim K, Vysotskiy I, et al. Materials Science and Enginee-ring A, 2020, 793, 139858.
5 Zhao W, Zhu Y, Liu Z, et al. International Journal of Mechanical Sciences, 2024, 109101.
6 Kesharwani R, Jha K K, Imam M, et al. Journal of Materials Research and Technology, 2023, 26, 3301.
7 Prabhu L, Kumar S S. Materials Today, Proceedings, 2020, 33, 741.
8 Kalinenko A, Kim K, Vysotskiy I, et al. Materials Science and Enginee-ring, A, 2020, 793, 139858.
9 Beygi R, Carbas R J C, Marques E A S, et al. Materials Science and Engineering, A, 2024, 890, 145907.
10 Xu X, Zhang C, Derazkola H A, et al. Vacuum, 2021, 192, 110460.
11 Derazkola H A, Garcia E, Elyasi M. Journal of Manufacturing Processes, 2021, 65, 161.
12 Sabry I, Singh V P, Alkhedher M, et al. Journal of Advanced Joining Processes, 2024, 74, 100207.
13 Lader S K, Baruah M, Ballav R. Journal of Manufacturing Processes, 2023, 85, 1154.
14 Zhang J Q, Shen Y F, Yao X, et al. Materials & Design, 2014, 64, 74.
15 Mao Y, Wu R, Guo H, et al. The International Journal of Advanced Manufacturing Technology, 2023, 128(7-8), 2971.
16 Li X, Zhang Z, Peng Y, et al. Journal of Materials Research and Technology, 2022, 18, 405.
17 Wang Y H, Wang K S, Wang W, et al. Journal of Materials Engineering, 2019, 47(11), 155(in Chinese).
王盈辉, 王快社, 王文, 等. 材料工程, 2019, 47(11), 155.
18 Xue P, Xiao B L, Ni D R, et al. Materials Science & Engineering A, 2010, 527(21-22), 5723.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed