Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24100146-6    https://doi.org/10.11896/cldb.24100146
  金属与金属基复合材料 |
V微合金化对Q355钢在不同热输入下焊接性能的影响机理研究
姜春晖1,2, 李昭东2, 高博2, 朱露2, 王寅鹏1,2, 魏伟1,*
1 常州大学材料科学与工程学院,江苏 常州 213164
2 钢铁研究总院有限公司工程用钢研究院,北京 100081
Mechanism Study on the Effect of V Microalloying on the Welding Performance of Q355 Steel Under Different Heat Inputs
JIANG Chunhui1,2, LI Zhaodong2, GAO Bo2, ZHU Lu2, WANG Yinpeng1,2, WEI Wei1,*
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
2 Institute for Structural Steels, Central Iron & Steel Research Institute Company Limited, Beijing 100081, China
下载:  全 文 ( PDF ) ( 34010KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用热-力模拟试验机(Gleeble)、扫描电镜(SEM)、背散射电子衍射(EBSD)和透射电镜(TEM)等表征方法系统地研究了V微合金化对Q355钢在不同热输入下焊接性能的影响机理。结果表明,在焊接热输入40~100 kJ/cm时,0.03%(质量分数)V的添加对实验钢的低温冲击韧性为负影响。当焊接热输入为20 kJ/cm时,0.03% V的添加使实验钢-40 ℃低温冲击韧性提高了15.3 J。分析认为,在焊接热输入为40~75 kJ/cm时,0.03% V抑制了针状铁素的形成;而焊接热输入为100 kJ/cm时,实验钢的组织粒异常粗大造成冲击韧性较差。焊接热输入为20 kJ/cm时,0.03%V的添加提高实验钢的淬透性,并且由于MC颗粒对奥氏体晶界的钉扎作用,细化了奥氏体晶粒,促进了马氏体的形核和长大,从而使M/A岛的分布相对弥散,降低了晶界M/A岛成为裂纹源的风险。此外,热输入为20 kJ/cm时,热影响区大量细小的MC颗粒使沉淀强化量σp增加,从而使焊接热影响区的硬度提高,实现了良好的强韧性匹配。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜春晖
李昭东
高博
朱露
王寅鹏
魏伟
关键词:  V微合金化  焊接  低温韧性  硬度  影响机理    
Abstract: The effect of V microalloying on the welding performance of Q355 steel at different heat inputs was investigated using advanced characterization techniques, including thermo-mechanical simulator (Gleeble), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM). The results show that under a welding heat input of 40—100 kJ/cm, the addition of 0.03% V adversely affects the low-temperature impact toughness of the steel. When the heat input is 20 kJ/cm, the addition of 0.03% V improves the low-temperature impact toughness at -40 ℃ by 15.3 J. Detailed analysis shows that at a heat input of 40—75 kJ/cm, the addition of 0.03% V suppresses the formation of acicular ferrite, while at a heat input of 100 kJ/cm, it leads to abnormally coarse grains in the experimental steel, significantly deteriorating impact toughness. At a heat input of 20 kJ/cm, the addition of 0.03% V enhances the hardenability of the steel. The pinning effect of MC particles on austenite grain boundaries refines austenite grains, facilitating the nucleation and growth of martensite. This contributes to a more dispersed distribution of M/A islands, reducing the likelihood of M/A islands at grain boundaries becoming crack initiation sites. Moreover, at a heat input of 20 kJ/cm, the presence of numerous fine MC particles in the heat-affected zone (HAZ) increases the precipitation strengthening contribution (σp), significantly enhancing the hardness of the HAZ and achieving an optimal balance between strength and toughness.
Key words:  V microalloying    welding    low-temperature toughness    hardness    mechanism of influence
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TG142.41  
  TG115.285  
基金资助: 国家重点研发计划 (2022YFB3706401);钢铁研究总院有限公司科技基金项目(事24G60250BJ)
通讯作者:  *魏伟,常州大学材料科学与工程学院教授、博士研究生导师。主要从事高性能钢铁与有色合金、表面工程、材料再生利用研究。benjiamin.wwei@163.com   
作者简介:  姜春晖,现为常州大学材料科学与工程学院硕士研究生。目前主要研究领域为交通与建筑用钢微合金化和无缝钢管组织性能调控。
引用本文:    
姜春晖, 李昭东, 高博, 朱露, 王寅鹏, 魏伟. V微合金化对Q355钢在不同热输入下焊接性能的影响机理研究[J]. 材料导报, 2025, 39(22): 24100146-6.
JIANG Chunhui, LI Zhaodong, GAO Bo, ZHU Lu, WANG Yinpeng, WEI Wei. Mechanism Study on the Effect of V Microalloying on the Welding Performance of Q355 Steel Under Different Heat Inputs. Materials Reports, 2025, 39(22): 24100146-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100146  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24100146
1 Metallurgical Industry Information Standards Research Institute. China Metallurgical News, DOI:10.28153/n.cnki.ncyjb.2024.002071 (in Chinese).
冶金工业信息标准研究院. 中国冶金报, DOI:10.28153/n.cnki.ncyjb.2024.002071.
2 Zhao P. China Metallurgical News, DOI:10.28153/n.cnki.ncyjb.2024.002219 (in Chinese).
赵萍. 中国冶金报, DOI:10.28153/n.cnki.ncyjb.2024.002219.
3 Jia L H. China Metallurgical News, DOI:10.28153/n.cnki.ncyjb.2024.002169 (in Chinese).
贾林海. 中国冶金报, DOI:10.28153/n.cnki.ncyjb.2024.002169.
4 Pu C L, Jiang Y, Yan D X, et al. Transactions of Materials and Heat Treatment, 2023, 44(7), 99(in Chinese).
蒲春雷, 姜嫄, 闫洞旭, 等. 材料热处理学报, 2023, 44(7), 99.
5 Wang S. Effect of Nb and V microalloying on the microstructure and impact toughness of CGHAZ welded P460NL1 steel. Master's Thesis, Yanshan University, China, 2022 (in Chinese).
王松. Nb、V微合金化对P460NL1钢焊接CGHAZ组织和冲击韧性的影响. 硕士学位论文, 燕山大学, 2022.
6 Hannerz N E. Welding Journal, 1975, 54(5), 162.
7 Das S, Karmakar A, Singh S B. High-performance ferrous alloys, Springer Nature Switzerland, 2021, pp.83.
8 Hu J, Du L X, Zang M, et al. Materials Characterization, 2016, 118, 446.
9 Gao Z Z, Chen X Y, Wang Y J, et al. Heat Treatment of Metals, 2022, 47(8), 163 (in Chinese).
高志喆, 陈小艳, 王永金, 等. 金属热处理, 2022, 47(8), 163.
10 Shi Z, Yang C, Wang R, et al. Materials Science and Engineering:A, 2016, 649, 270.
11 Liu Z H. Welding & Joining, 2007(9), 46 (in Chinese).
刘作辉. 焊接, 2007(9), 46.
12 Zhou J L, Huang G, Xiang S, et al. Special Steel, 2014, 35(3), 49(in Chinese).
周家林, 黄高, 向上, 等. 特殊钢, 2014, 35(3), 49.
13 Zhang J W, Li H J, Feng Z Z, et al. Welding & Joining, 2017(11), 58(in Chinese).
张笈玮, 李宏佳, 冯忠志, 等. 焊接, 2017(11), 58.
14 Yang Y H, Yuan S Q, Wu D, et al. Heat Treatment of Metals, 2019, 44(12), 132(in Chinese).
杨跃辉, 苑少强, 吴迪, 等. 金属热处理, 2019, 44(12), 132.
15 Wen T, Hu X, Song Y, et al. Materials Science and Engineering:A, 2013, 588, 201.
16 Hyzak J M, Bernstein I M. Metallurgical Transactions A, 1976, 7, 1217.
17 Farrar R A, Harrison P L. Journal of Materials Science, 1987, 22(11), 3812.
18 Xiao F R, Liao B, Ren D L, et al. Materials Characterization, 2005, 54(4-5), 305.
19 Tweed J H, Knott J F. Acta Metallurgica, 1987, 35(7), 1401.
20 Meester B D. ISIJ International, 1997, 37(6), 537.
21 Wang X N, Zhao Y J, Guo P F, et al. Journal of Materials Engineering and Performance, 2019, 28, 1810.
22 Qian Weifang. Baosteel Technology, 2021(6), 1 (in Chinese).
钱伟方. 宝钢技术, 2021(6), 1.
23 Thompson A W, Knott J F. Metallurgical Transactions A, 1993, 24, 523.
24 Bayraktar E, Kaplan D. Journal of Materials Processing Technology, 2004, 153, 87.
25 Bhadeshia H K D H, Christian J W. Metallurgical Transactions A, 1990, 21, 767.
26 Liu F F, Fu K J, Wang J J, et al. Shanghai Metal, 2018, 40(2), 7(in Chinese).
刘芳芳, 付魁军, 王佳骥, 等. 上海金属, 2018, 40(2), 7.
[1] 李欢, 张健, 伍世英, 刘千喜. 焊头形状对Cu/Al大功率超声焊接温度场及塑性变形的影响[J]. 材料导报, 2025, 39(6): 24010115-6.
[2] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[3] 程东海, 张夫庭, 陶玄宇, 余超, 龚浩, 李海涛, 王德, 熊震宇. 稀土元素对钛合金激光焊接头组织及性能的影响[J]. 材料导报, 2025, 39(3): 23060020-5.
[4] 彭进, 许红巧, 王星星, 龙伟民, 张永振, 于晓凯. 激光深熔焊匙孔及焊接飞溅行为的数值模拟[J]. 材料导报, 2025, 39(3): 22030166-5.
[5] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[6] 王银晨, 常云峰, 秦志伟, 张亮亮, 董红刚, 程亚芳, 郭鹏, 李鹏. TiAl系合金和镍基高温合金连接技术研究进展[J]. 材料导报, 2025, 39(21): 24100004-15.
[7] 刘景武, 杜义, 孙磊, 王杏华, 付红亮, 张浩, 王任甫. 高强钢熔敷金属中贝氏体板条形核机制及对力学性能的影响[J]. 材料导报, 2025, 39(21): 25040221-5.
[8] 王梦娜, 高旭东, 邵永波, 朱海龙, 杜栖云. 加载频率对EH36/EH690异种高强钢焊接接头腐蚀疲劳裂纹扩展行为的影响[J]. 材料导报, 2025, 39(20): 24090131-9.
[9] 杨瑞琛, 王进, 高波, 张帅, 张新月. 水冷介质对铜铝异种金属薄板搅拌摩擦焊焊缝性能的影响[J]. 材料导报, 2025, 39(17): 24050098-6.
[10] 李良顺, 李化建, 杨志强, 石贺男, 董昊良. 基于粗骨料的混凝土弹性模量控制方法及预测模型[J]. 材料导报, 2025, 39(16): 24070071-15.
[11] 郑玉刚, 苟世宁, 冯兴国, 汪科良, 赵蒙, 张凯锋, 周晖, 李林. 金属掺杂MoS2基复合薄膜的微观结构与真空摩擦学性能研究[J]. 材料导报, 2025, 39(15): 25040052-7.
[12] 刁旺战, 徐祥久, 王萍, 赵卫君, 刘海, 张松. Haynes 282焊接接头长时热暴露后的力学性能和组织稳定性[J]. 材料导报, 2025, 39(14): 24050002-7.
[13] 胡少青, 岳赟, 平静艳, 邓四二, 杜三明. 不同氮气流量对等离子弧熔覆TiNx/Ti合金涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2025, 39(14): 24070140-7.
[14] 赵锡龙, 曹泽宇, 赵铭, 王堃. 铜合金板材低电压螺柱喷涂304奥氏体不锈钢喷涂工艺及涂层性能研究[J]. 材料导报, 2025, 39(14): 24070070-7.
[15] 李佳, 黄利, 冉启洪, 高峰. AlMg/6082异种铝合金脉冲MIG焊缝微观组织特征和力学性能[J]. 材料导报, 2025, 39(10): 23120234-6.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed