Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24100232-8    https://doi.org/10.11896/cldb.24100232
  金属与金属基复合材料 |
Vac/E与PVE改性磷酸镁涂层附着力与防腐性能研究
郑传杰1, 李艳丽1, 董慧珠1, 汤世豪2, 范旭涵2, 裴妍2,*
1 山东电力工程咨询院有限公司,济南 250199
2 山东大学土建与水利学院,济南 250061
Study on Adhesion and Anticorrosive Performance of Magnesium Phosphate Coating Modified by Vac/E and PVE
ZHENG Chuanjie1, LI Yanli1, DONG Huizhu1, TANG Shihao2, FAN Xuhan2, PEI Yan2,*
1 Shandong Electric Power Engineering Consulting Institute Corp., Ltd., Jinan 250199, China
2 School of Civil Engineering, Shandong University, Jinan 250061, China
下载:  全 文 ( PDF ) ( 28506KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磷酸镁水泥(Magnesium phosphate cement,MPC)是一种性能优异的无机防腐候选材料,但用于钢材表面防腐,还存在涂层与钢材协调变形差、防腐能力定量评价有待提升等问题。本工作选取可再分散乳胶粉(Vac/E)和聚丙烯酸酯乳液(PVE)制备了改性MPC涂层,研究了不同Vac/E和PVE掺量下涂层凝结时间和附着力的变化规律、选定掺量下涂层的电化学性能,并结合物相组成和微观形貌分析,揭示了Vac/E与PVE改性MPC涂层附着力的作用机制。结果表明:相比于环氧涂层,Vac/E与PVE改性MPC涂层的附着力提高了2~3级,在电力基础设施防腐涂层工程中应用前景广阔。PVE的改性效果优于Vac/E,其最佳掺量为1%,加速腐蚀过程中涂层电阻仅下降24.62%,渗透量下降1~2个数量级,防腐性能优异。扫描电镜分析表明,PVE聚合而成的空间网状结构穿插在MPC的水化产物中,提高了涂层的致密性,延缓了钝化膜的破坏,Vac/E能吸附在水化产物表面,抑制其水解,不利于点蚀区的再钝化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑传杰
李艳丽
董慧珠
汤世豪
范旭涵
裴妍
关键词:  磷酸镁水泥(MPC)  防腐涂层  电化学  聚合物    
Abstract: Magnesium phosphate cement (MPC) is a candidate material for inorganic anti-corrosion with excellent performance. However, when it is used for anti-corrosion of the steel surfaces, there are still some problems, such as the coordinated deformation of coating and steel, the evaluation and improvement of anti-corrosion ability. In this work, the modified MPC coating was prepared by Vac/E and PVE. The changes in the setting time and adhesion of the coating with different contents of Vac/E and PVE were studied. The electrochemical performance of the coa-ting with the selected content was analyzed. Combined with the phase composition and micromorphology analysis, the adhesion mechanism between Vac/E and PVE modified MPC coating was revealed. The results show that compared with epoxy coating, the adhesion of Vac/E and PVE-modified MPC coating is improved by 2—3 levels, which meets the engineering application requirements of anti-corrosion coating for power infrastructure. The modified effect of PVE is better than that of Vac/E, and its optimal content is 1%. During the accelerated corrosion process, the coating resistance decreases by only 24.62%, and the penetration decreases by 1—2 orders of magnitude, exhibiting good anti-corrosion performance. SEM analysis shows that the space network structure formed by PVE polymerization is interspersed in the hydration product of MPC, which improves the compactness of the coating and delays the destruction of the passive film. Vac/E could be adsorbed on the surface of the hydration product, inhibits its hydrolysis, and be not conducive to the re-passivation of the pitting corrosion area.
Key words:  magnesium phosphate cement (MPC)    anti-corrosion coating    electrochemistry    polymer
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(52279105)
通讯作者:  *裴妍,博士,山东大学土建与水利学院副教授、博士研究生导师。目前主要从事多孔介质(岩土体、混凝土等)多场耦合多尺度渗流传输、低渗/超低渗材料渗透测试理论与方法、多孔介质微细观结构特征与多尺度力学行为、地下工程防灾减灾高性能复合材料制备与性能等方面的研究工作。peiyan@sdu.edu.cn   
作者简介:  郑传杰,高级工程师,硕士。现任职于山东电力工程咨询院有限公司,主要从事风力发电、光伏发电及高压输电方向的结构设计相关工作。
引用本文:    
郑传杰, 李艳丽, 董慧珠, 汤世豪, 范旭涵, 裴妍. Vac/E与PVE改性磷酸镁涂层附着力与防腐性能研究[J]. 材料导报, 2025, 39(23): 24100232-8.
ZHENG Chuanjie, LI Yanli, DONG Huizhu, TANG Shihao, FAN Xuhan, PEI Yan. Study on Adhesion and Anticorrosive Performance of Magnesium Phosphate Coating Modified by Vac/E and PVE. Materials Reports, 2025, 39(23): 24100232-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100232  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24100232
1 Ma X M, Zhu G Y, Lu D Z, et al. Strategic Study of CAE, 2022, 24(1), 190(in Chinese).
马秀敏, 朱桂雨, 路东柱, 等. 中国工程科学, 2022, 24(1), 190.
2 Hou B R, Zhang D, Wang P. Bulletin of Chinese Academy of Sciences, 2016, 31(12), 1326(in Chinese).
侯保荣, 张盾, 王鹏. 中国科学院院刊, 2016, 31(12), 1326.
3 Han E H, Chen J M, Su Y J, et al. Materials China, 2014, 33(2), 65(in Chinese).
韩恩厚, 陈建敏, 宿彦京, 等. 中国材料进展, 2014, 33(2), 65.
4 He X Y, Xia H J, Wen Z H, et al. Materials Protection, 2022, 55(11), 149(in Chinese).
何晓宇, 夏宏杰, 温哲华, 等. 材料保护, 2022, 55(11), 149.
5 Lu Z, Qian J G, Ye B, et al. Surface Technology, 2024, 53(12), 22(in Chinese).
鲁震, 钱建国, 叶兵, 等. 表面技术, 2024, 53(12), 22.
6 Zhang Y, Sun P F, Lyu P, et al. Materials Reports, 2022, 36(2), 220(in Chinese).
张月, 孙鹏飞, 吕平, 等. 材料导报, 2022, 36(2), 220.
7 Wang C B, Li X Y, Xu Z G, et al. Surface Technology, 2023, 52(12), 225(in Chinese).
王传彬, 李秀一, 徐志刚, 等. 表面技术, 2023, 52(12), 225.
8 Tang H, Qian J S, Ji Z W, et al. Construction and Building Materials, 2020, 255, 119422.
9 Qin J H, Qian J S, Song Q, et al. Journal of the Chinese Ceramic Society, 2022, 50(6), 1592(in Chinese).
秦继辉, 钱觉时, 宋庆, 等. 硅酸盐学报, 2022, 50(6), 1592.
10 Liu J, Yan C W, Liu S G, et al. Construction and Building Materials, 2024, 418, 135339.
11 Fang Y, Chen B. Materials Reports, 2017, 31(24), 6(in Chinese).
方圆, 陈兵. 材料导报, 2017, 31(24), 6.
12 Yang Z H, Liu S J, Wu K, et al. Materials Reports, 2023, 37(1), 118(in Chinese).
杨正宏, 刘思佳, 吴凯, 等. 材料导报, 2023, 37(1), 118.
13 Feng H, Nie S, Guo A F, et al. Construction and Building Materials, 2022, 341, 127861.
14 Liu Y T, Chen B, Dong B Q, et al. Construction and Building Materials, 2022, 314, 125581.
15 Meng X R, Liu Y T, Chen B, et al. Materials Reports, 2024, 38(17), 29(in Chinese).
孟祥瑞, 刘源涛, 陈兵, 等. 材料导报, 2024, 38(17), 29.
16 Hu X X, Tao R, Xin Y J, et al. Construction and Building Materials, 2024, 416, 135159.
17 Liu R Q, Wang W, Qi D W, et al. Construction and Building Materials, 2023, 392, 131933.
18 Mo L W, Lv L M, Deng M, et al. Cement and Concrete Research, 2018, 111, 116.
19 Sun Z G, Wu Y, Xie H, et al. Construction and Building Materials, 2023, 401, 132880.
20 Lv Y, Li T, Xu X H, et al. Construction and Building Materials, 2024, 456, 139170.
21 Xu X Y, Lin X J, Pan X X, et al. Construction and Building Materials, 2020, 235, 117544.
22 Ahmad M R, Chen B. Construction and Building Materials, 2020, 237, 117795.
23 Feng H, Liang J T, Guo A F, et al. Cement and Concrete Composites, 2023, 137, 104923.
24 Yu B Y, Zhou J W, Cheng B J, et al. Construction & Building Materials, 2021, 283, 122585.
25 Feng H, Min Z S, Guo A F, et al. Materials Reports, 2024, 38(17), 17(in Chinese).
冯虎, 闵智爽, 郭奥飞, 等. 材料导报, 2024, 38(17), 17.
26 Ma H Y, Xu B W, Li Z J. Cement and Concrete Research, 2014, 65, 96.
27 Gan X Y, Zhu Y, Ma K, et al. Construction and Building Materials, 2024, 440, 137439.
28 Yu J C, Lin L D, Qian J S, et al. Construction and Building Materials, 2021, 302, 124400.
29 Zheng D D, Tao J, Wang C Q, et al. Construction and Building Materials, 2016, 106, 415.
30 Lu S, Jiang D B, Li Q Q, et al. Journal of the Chinese Ceramic Society, 2023, 51(11), 2857(in Chinese).
卢烁, 姜东兵, 李琦琦, 等. 硅酸盐学报, 2023, 51(11), 2857.
31 Lei D Y, Li M A, Zhang P, et al. Journal of the Chinese Ceramic Society, 2023, 51(11), 2876(in Chinese).
雷东移, 李明昂, 张鹏, 等. 硅酸盐学报, 2023, 51(11), 2876.
32 Huang Y B, Wang R Z, Zhou J J, et al. Journal of Functional Materials, 2014, 45(11), 1107(in Chinese).
黄煜镔, 王润泽, 周静静, 等. 功能材料, 2014, 45(11), 11071.
33 Huang Y B, Wang R Z, Yu F, et al. Journal of Hunan University (Natural Sciences), 2014, 41(7), 56(in Chinese).
黄煜镔, 王润泽, 余帆, 等. 湖南大学学报(自然科学版), 2014, 41(7), 56.
34 Chen B, Wu Z, Wu X P. Journal of Wuhan University of Technology, 2011, 33(4), 29(in Chinese).
陈兵, 吴震, 吴雪萍. 武汉理工大学学报, 2011, 33(4), 29.
35 Hao P, Yan L S, Dong J L. Paint & Coatings Industry, 2020, 50(4), 26(in Chinese).
郝朋, 闫林森, 东继莲. 涂料工业, 2020, 50(4), 26.
36 Li J. Duiability and mechanism of magnesium ammonium phosphate cement coatings in corrosive environment. Ph. D. Thesis, China University of Mining and Technology, China, 2018(in Chinese)
李军. 侵蚀环境下磷酸铵镁水泥基涂料的耐久性能及机理研究. 博士学位论文, 中国矿业大学, 2018.
37 Hai Y. Study on the ductility mechanism of the polymer modified magnesium potassium phosphate cement. Master’s Thesis, Fuzhou University, China, 2017 (in Chinese).
海莹. 聚合物改性磷酸钾镁水泥韧性机理研究. 硕士学位论文, 福州大学, 2017.
38 Ma C, Chen B. Construction and Building Materials, 2016, 113, 255.
39 Tang H. Research on protection performance and mechanism in steel bars of magnesium phosphate cement-based materials. Ph. D. Thesis, Chongqing University, China, 2021(in Chinese).
唐浩. 磷酸镁水泥基材料的钢筋防护性能与机理研究. 博士学位论文, 重庆大学, 2021.
40 Dong Y H. Anti-corrosion effect of magnesium phosphate cement coating on carbon steel. Master’s Thesis,Southwest Jiaotong University, China, 2017 (in Chinese).
董英豪. 碳钢表面磷酸镁水泥涂层的防腐性研究. 硕士学位论文, 西南交通大学, 2017.
41 Yang H Y. Research of preparation and modification of anticorrosive magnesium phosphate cement coating on Q235 steel. Master’s Thesis, Southwest Jiaotong University, China, 2015 (in Chinese).
杨海艳. Q235钢表面磷酸镁水泥防腐涂层的制备及改性研究. 硕士学位论文, 西南交通大学, 2015.
42 Zheng S P, Niu K M, Tian B, et al. Journal of Building Materials, 2017, 20(6), 962 (in Chinese).
郑少鹏, 牛开民, 田波, 等. 建筑材料学报, 2017, 20(6), 962.
[1] 张龙, 姚旭文, 车春霞, 秦智, 李国洲, 韩迎红, 杨博. Janus粒子增强PP/PMMA共混聚合物材料的力学和热稳定性能的研究[J]. 材料导报, 2025, 39(9): 24010255-8.
[2] 来仁杰, 辛俊伟, 王磊, 王旭东, 吕永涛. 电化学阻抗谱技术在水处理分离膜研究中的应用进展[J]. 材料导报, 2025, 39(8): 24040168-9.
[3] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[4] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[5] 吴焱, 乔英杰, 白成英, 王晓东, 张晓红. 聚合物材料正热膨胀调控研究进展[J]. 材料导报, 2025, 39(7): 23120194-11.
[6] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[7] 谢浩民, 李光明, 胡凌越, 毛飞雄, 宫克. 载荷和电位对Ti-6Al-3Nb-2Zr-1Mo合金在海水中腐蚀磨损行为的影响[J]. 材料导报, 2025, 39(6): 24010227-11.
[8] 徐海黎, 杨雅雯, 邢强, 陈妍, 廖晓波, 张小萍, 庄健. 玻璃微探针电沉积的微结构制造路径规划[J]. 材料导报, 2025, 39(5): 23100020-7.
[9] 孙丽丽, 关宁, 王勇, 李永存. TiFe基储氢合金活化及电化学性能研究进展[J]. 材料导报, 2025, 39(4): 24010105-9.
[10] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[11] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[12] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[13] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[14] 李东翰, 宁舒蕊, 于璐, 廖明义, 张梦霞, 尤诗博, 方庆红. 稀土催化还原体系用于遥爪型低分子量含氟聚合物端基官能化的基础研究[J]. 材料导报, 2025, 39(3): 23100154-9.
[15] 李方贤, 王子敬, 奚爽, 顾雅洁, 韦江雄, 余其俊. 基于金属硅粉发气的多孔地聚合物制备及性能研究[J]. 材料导报, 2025, 39(23): 24120078-6.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed