Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24100133-14    https://doi.org/10.11896/cldb.24100133
  无机非金属及其复合材料 |
高速铁路混凝土结构耐久性检(监)测与评定技术
董昊良1,2,3, 李化建2,3,*, 杨志强2,3, 石贺男1,2,3, 李良顺1,2,3, 黄法礼2,3, 王振2,3, 易忠来2,3
1 中国铁道科学研究院,北京 100081
2 中国铁道科学研究院 铁道建筑研究所,北京 100081
3 高速铁路轨道系统全国重点实验室,北京 100081
Durability Detection,Monitoring and Evaluation Technologies for High-speed Railway Concrete Structure
DONG Haoliang1,2,3, LI Huajian2,3,*, YANG Zhiqiang2,3, SHI Henan1,2,3, LI Liangshun1,2,3, HUANG Fali2,3, WANG Zhen2,3, YI Zhonglai2,3
1 China Academy of Railway Sciences, Beijing 100081, China
2 Railway Engineering Research Institute, China Academy of Railway Science Corporation Limited, Beijing 100081, China
3 State Key Laboratory Track Technology of High-speed Railway, Beijing 100081, China
下载:  全 文 ( PDF ) ( 6226KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高速铁路混凝土结构具有跨越区域广、环境作用复杂、动荷载作用突出等特点,其结构长期耐久性是保障高速列车安全运行、提升高铁基础设施使用寿命的基础。本文综述了我国高速铁路典型混凝土结构服役现状,分析了高速铁路混凝土结构耐久性劣化特征与劣化规律,总结了现阶段高速铁路混凝土结构渗透性能、裂缝、钢筋锈蚀和冻融损伤等耐久性检/监测技术的研究现状,分析了既有高速铁路混凝土结构耐久性的评定方法,并提出使用非接触式检测和内置传感器监测等方法是未来高速铁路混凝土结构检测和监测技术的发展方向。同时建议高速铁路混凝土结构耐久性评定应考虑复杂严酷环境作用并进行量化评价,以期为高速铁路混凝土结构耐久性评定技术提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董昊良
李化建
杨志强
石贺男
李良顺
黄法礼
王振
易忠来
关键词:  高速铁路  混凝土结构  耐久性  检(监)测  评定    
Abstract: High-speed railway concrete structures are characterized by their extensive territorial coverage, complex environmental interactions, and prominent dynamic loading effects. The long-term durability of these structures isthe basis for ensuring the safe operation of high-speed trains and enhancing the service life of high-speed railway infrastructure. This paper reviews the current service status of typical concrete structures of high-speed railways in China, analyzes the characteristics and patterns of durability degradation in high-speed railway concrete structures, and summarizes the research status of durability inspection/monitoring technologies for high-speed railway concrete structures, including permeability, cracking, steel corrosion, and freeze-thaw damage. Further evaluates existing assessment methods for the durability of high-speed railway concrete structures and proposes that non-contact detection and embedded sensor monitoring represent the future direction of development for inspection and monitoring technologies in this field. Additionally, it is recommended that the durability assessment of high-speed railway concrete structures should take into account complex and harsh environmental effects and conduct quantitative evaluations. These aim to provide a reference for durability assessment techniques of high-speed railway concrete structures.
Key words:  high-speed railway    concrete structure    durability    inspection/monitoring    assess
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52208299;52178260);中国国家铁路集团有限公司科技研究开发计划项目(J2023G003);铁科院院基金(2023YJ229);科学探索奖
通讯作者:  *李化建,中国铁道科学研究院研究员、博士研究生导师,长期从事固体废弃物建材资源化、高速铁路新型混凝土及其结构耐久性方面应用基础研究。chinasailor@163.com   
作者简介:  董昊良,中国铁道科学研究院博士研究生,在李化建研究员的指导下进行研究。主要从事高铁高性能混凝土及其结构耐久性领域的研究。
引用本文:    
董昊良, 李化建, 杨志强, 石贺男, 李良顺, 黄法礼, 王振, 易忠来. 高速铁路混凝土结构耐久性检(监)测与评定技术[J]. 材料导报, 2025, 39(21): 24100133-14.
DONG Haoliang, LI Huajian, YANG Zhiqiang, SHI Henan, LI Liangshun, HUANG Fali, WANG Zhen, YI Zhonglai. Durability Detection,Monitoring and Evaluation Technologies for High-speed Railway Concrete Structure. Materials Reports, 2025, 39(21): 24100133-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100133  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24100133
1 Chen W, Li S, Wang W, et al. Theoretical and Applied Fracture Mechanics, 2024, 129, 104206.
2 Lindvall A. Environmental actions and response: Reinforced concrete structures exposed in road and marine environments. Ph. D. Thesis, Chalmers University of Technology, Sweden, 2001.
3 Dong H L, Li H J, Yang Z Q, et al. Materials Reports, 2024, 38(2), 143(in Chinese).
董昊良, 李化建, 杨志强, 等. 材料导报, 2024, 38(2), 143.
4 Li H J, Zhao G T, Gao L, et al. Journal of the China Railway Society, 2023, 45(8), 1(in Chinese).
李化建, 赵国堂, 高亮, 等. 铁道学报, 2023, 45(8), 1.
5 Zeng H, Li W, Jin M, et al. International Journal of Fatigue, 2022, 165, 107181.
6 Xie Y J, Zhong X H, Zhu C H, et al. China Railway Science, 2003(1), 110(in Chinese).
谢永江, 仲新华, 朱长华, 等. 中国铁道科学, 2003(1), 110.
7 Geng W S, Shang J L, Chen Q T, et al. Architecture Technology, 1992(8), 472(in Chinese).
耿维恕, 尚建丽, 陈庆亭, 等. 建筑技术, 1992(8), 472.
8 Liu Z, Zhang F, Deng D, et al. Case Studies in Construction Materials, 2017, 6, 206.
9 Gao J, Yu Z, Song L, et al. Construction and Building Materials, 2013, 39, 33.
10 Guo J J, Liu P Q, Wu C L, et al. Applied Sciences, 2021, 11(2), 888.
11 Xu B. In:The cost of corrosion in China, Hou B, ed. Singapore: Springer Singapore, 2019, pp. 35.
12 Tian W, Gao F. Advances in Materials Science and Engineering, 2020, 2020(1), 8032849.
13 Puatatsananon W, Saouma V. Journal of Materials in Civil Engineering, 2005, 17(3), 264.
14 Al-Jabari M. Integral Waterproofing of Concrete Structures, 2022, 69, 105701.
15 Xu H, Liu Y, Chen W, et al. Electrochimica Acta, 2009, 54(16), 4067.
16 Tam V W, Butera A, Le K N. Construction and Building Materials, 2023, 365, 130120.
17 Ren J J, Wengao Liu W G, Lai J L, et al. Engineering Failure Analysis, 2024, 107955.
18 Ann K Y, Song H W. Corrosion Science, 2007, 49(11), 4113.
19 Bao J, Li S, Yu Z, et al. Journal of Building Engineering, 2021, 44, 103373.
20 Liu Q F, Easterbrook D, Yang J, et al. Engineering Structures, 2015, 86, 122.
21 Xue S, Zhang P, Bao J, et al. Materials Characterization, 2020, 160, 110085.
22 Pang L, Li Q. Construction and Building Materials, 2016, 113, 979.
23 Liu Q F, Hu Z, Lu X Y, et al. Materials, 2020, 13(1), 174.
24 Zhang J, Lounis Z. Cement and Concrete Research, 2006, 36(7), 1312.
25 Zhao Y X, Wang C K, Jin W L, et al. Journal of Civil, Architectural and Environmental Engineering, 2010, 32(3), 8(in Chinese).
赵羽习, 王传坤, 金伟良, 等. 土木建筑与环境工程, 2010, 32(3), 8.
26 Yang D, Yan C, Zhang J, et al. Construction and Building Materials, 2021, 267, 120979.
27 Bastidas-Arteaga E, Schoefs F. In: Proceedings of the institution of civil engineers-maritime engineering. Thomas Telford Ltd, 2015, pp. 162.
28 Dong W, Wang X, He Q, et al. Intelligent Transportation Infrastructure, 2022, 1, 23.
29 Dong H L, Li H J, Yang Z Q, et al. Journal of the China Railway Society, 2024, 46(8), 112(in Chinese).
董昊良, 李化建, 杨志强, 等. 铁道学报, 2024, 46(8), 112.
30 Li H, Yang Z, Wen J, et al. Journal of Sustainable Cement-Based Materials, 2023, 12(6), 672.
31 Matias S R, Ferreira P A. Construction and Building Materials, 2022, 322, 126445.
32 Chen W, Zhang Y, Zhang T, et al. Cold Regions Science and Technology, 2024, 224, 104233.
33 Ma K, Xie Y, Long G, et al. Science China Technological Sciences, 2014, 57, 1909.
34 Hasan M, Ueda T, Sato Y. Journal of Materials in Civil Engineering, 2008, 20(1), 37.
35 Bharadwaj K, Glosser D, Moradllo M K, et al. Cement and Concrete Research, 2019, 124, 105820.
36 Gong F, Jacobsen S. Cement and Concrete Research, 2019, 115, 294.
37 Peng R X, Qiu W L, Teng F. Ocean Engineering, 2022, 263, 112304.
38 Yin Y, Hu S, Lian J, et al. Engineering Fracture Mechanics, 2022, 266, 108406.
39 Sakr M, Bassuoni M, Hooton R, et al. ACI Materials Journal, 2020, 117(6), 253.
40 Wu Q, Ma Q, Huang X. Materials, 2021, 14(9), 2343.
41 Lu F, Wang H, Wang L, et al. Materials, 2022, 15(13), 4435.
42 Ma K L, Long G C, Xie Y J. Journal of Central South University, 2012, 19(8), 2340.
43 Long G C, Xie Y J, Deng D H, et al. Journal of Central South University, 2011, 18(3), 881.
44 Liu D, Chen H, Tang Y, et al. Materials, 2021, 14(19), 5904.
45 Colman C, Bulteel D, Thiéry V, et al. Construction and Building Materials, 2021, 272, 121851.
46 Horkoss S, Escadeillas G, Rizk T, et al. Case Studies in Construction Materials, 2016, 4, 62.
47 Wang W B, Mo L W, Deng M. Materials Reports, 2019, 33(8), 1307(in Chinese).
王卫彪, 莫立武, 邓敏. 材料导报, 2019, 33(8), 1307.
48 Crammond N J. Cement and Concrete Research, 1984, 14(2), 225.
49 Liu Y M, Yu H M, Wang C, et al. Rock and Soil Mechanies, 2011, 32(9), 2704(in Chinese).
刘艳敏, 余宏明, 汪灿, 等. 岩土力学, 2011, 32(9), 2704.
50 Flatt R J. Journal of Crystal Growth, 2002, 242(3-4), 435.
51 Binda L, Baronio G. Durability of Building Materials, 1987, 4(3), 227.
52 Flatt R J, Scherer G W. MRS Online Proceedings Library (OPL), 2002, 712, 2.
53 Haynes H, O’neill R, Neff M, et al. ACI Materials Journal, 2008, 105(1), 35.
54 Scherer G W. Cement and Concrete Research, 2004, 34(9), 1613.
55 Bassuoni M, Nehdi M. Materials and Structures, 2009, 42, 1039.
56 Crammond N. Cement and Concrete Composites, 2002, 24(3-4), 393.
57 Collett G, Crammond N J, Swamy R N, et al. Cement and Concrete Research, 2004, 34(9), 1599.
58 Deng D H, Liu Z Q, Schutter G D, et al. Journal of the Chinese Ceramic Society, 2012, 40(2), 11(in Chinese).
邓德华, 刘赞群, Schutter G D, 等. 硅酸盐学报, 2012, 40(2), 11.
59 Wen J X. Fatigue performance evaluation method and improvement technology of concrete for ballastless track of high-speed railway. Master’s Thesis, China Academy of Railway Sciences, China, 2022(in Chinese).
温家馨. 高速铁路无砟轨道混凝土疲劳性能评价方法与提升技术. 硕士学位论文, 中国铁道科学研究院, 2022.
60 Zhu S, Wang M, Zhai W, et al. Construction and Building Materials, 2018, 187, 460.
61 Zhang D, Yang Q, Mao M, et al. Construction and Building Materials, 2020, 242, 118125.
62 Lei B, Li W, Li Z, et al. Journal of Materials in Civil Engineering, 2018, 30(9), 04018220.
63 Miao Y Y, Niu D T, Cheng N. Science of Advanced Materials, 2019, 11(12), 1781.
64 Lu Y, Tang W, Li S, et al. Construction and Building Materials, 2018, 181, 85.
65 Ahn W, Reddy D. Cement and Concrete Research, 2001, 31(3), 343.
66 Jacobsen S, Sellevold E J, Matala S. Cement and Concrete Research, 1996, 26(6), 919.
67 Li W, Sun W, Jiang J. Construction and Building Materials, 2011, 25(5), 2604.
68 Liu D. Durability of ballasteless slabtrack subjected to dynamic load and prediction of fatigue durability. Master’s Thesis, Southwest Jiaotong University, China, 2017(in Chinese).
刘丹. 振动荷载下无砟轨道耐久性特性与疲劳耐久性预测研究. 硕士学位论文, 西南交通大学, 2017.
69 Xiang T, Zhao R. Engineering Structures, 2007, 29(7), 1539.
70 Yang Z Q, Li H J, Wen J X, et al. Railway Engineering, 2022, 62(12), 24.
杨志强, 李化建, 温家馨, 等. 铁道建筑, 2022, 62(12), 24.
71 Song Z, Jiang L, Li W, et al. Construction and Building Materials, 2016, 113, 712.
72 Pang S, Diao B, Ye Y, et al. Advances in Materials Science and Engineering, 2017, 2017(1), 3701740.
73 Fu C, Ye H, Jin X, et al. Construction and Building Materials, 2016, 125, 714.
74 Pereira C G, Castro-Gomes J, De Oliveira L P. Construction and Building Materials, 2009, 23(2), 602.
75 Vandevoorde D, Pamplona M, Schalm O, et al. Journal of Cultural He-ritage, 2009, 10(1), 41.
76 Juhász P, Kopecskó K. Central European Geology, 2014, 57(2), 213.
77 Vandevoorde D, Cnudde V, Procedia Chemistry, 2013, 8, 317.
78 Wilson M, Taylor S, Hoff W. Magazine of Concrete Research, 1998, 50(2), 179.
79 Andrzej M, Marta M. Procedia Engineering, 2016, 153, 483.
80 Tian Y, Chen C, Jin N, et al. Construction and Building Materials, 2019, 221, 443.
81 Wu L P, Yang J B, Yan P Y. Journal of Basic Science and Engineering, 2012, 20(2), 304(in Chinese).
吴立朋, 杨进波, 阎培渝. 应用基础与工程科学学报, 2012, 20(2), 304.
82 Wang X F. Journal of Railway Engineering Society, 2008(7), 79.
王秀芬. 铁道工程学报, 2008(7), 79.
83 Wu J H, Zhang Y M. Concrete, 2009(2), 38(in Chinese).
吴建华, 张亚梅. 混凝土, 2009(2), 38.
84 Yang L F, Chen J W, Zhao J Q, et al. China Civil Engineering Journal, 2020, 53(12), 22(in Chinese).
杨绿峰, 陈俊武, 赵家琦, 等. 土木工程学报, 2020, 53(12), 22.
85 Dhir R K, Hewlett P C, Byars E A, et al. Magazine of Concrete Research, 1995, 47(171), 167.
86 Basheer M. "Clam" permeability tests for assessing the durability of concrete. Ph. D. Thesis, Queen’s University of Belfast, UK, 1994.
87 Torrent R J. Materials and Structures, 1992, 25, 358.
88 Kollek J. Materials and Structures, 1989, 22, 225.
89 Park S, Stubbs N, Bolton R, et al. Computer-Aided Civil and Infrastructure Engineering, 2001, 16(1), 58.
90 Estes A C, Frangopol D M. Journal of Bridge Engineering, 2003, 8(6), 374.
91 Sohn H G, Lim Y M, Yun K H, et al. Computer-Aided Civil and Infrastructure Engineering, 2005, 20(1), 52.
92 China Academy of Railway Sciences. The cracking causes and repair techniques of bridge pier concrete in Qinghai-Tibet Railway. Beijing, 2011(in Chinese).
中国铁道科学研究院. 青藏铁路桥梁墩台混凝土开裂成因及裂缝维修技术. 北京, 2011.
93 Wang J, Li H, Ma C, et al. Railway Sciences, 2024, 3(1), 59.
94 Li Z W, Liu X Z, Lu H Y, et al. Materials, 2020, 13(21), 4837.
95 Zheng Y, Wang S, Zhang P, et al. Buildings, 2022, 12(6), 843.
96 Cheilakou E, Tsopelas N, Anastasopoulos A, et al. Procedia Structural Integrity, 2018, 10, 25.
97 Clauß F, Ahrens M A, Mark P. Structural Concrete, 2021, 22(5), 2992.
98 Murray C A, Take W A, Hoult N A. Canadian Geotechnical Journal, 2015, 52(2), 141.
99 Pakrashi V, Basu B, O’Connor A. Engineering Structures, 2007, 29(9), 2097.
100 Yeum C M, Dyke S J. Computer-Aided Civil and Infrastructure Enginee-ring, 2015, 30(10), 759.
101 Chen A, Fang X, Pan Z, et al. Structural Concrete, 2022, 23(1), 16.
102 Potenza F, Castelli G, Gattulli V, et al. Procedia Engineering, 2017, 199, 1894.
103 Nair A, Cai C S. Engineering Structures, 2010, 32(6), 1704.
104 Dorafshan S, Azari H. Construction and Building Materials, 2020, 263, 120109.
105 Li S L, Shi H S, Wu G M, et al. Bridge Construction, 2017, 47(5), 83(in Chinese).
李胜利, 石鸿帅, 毋光明, 等. 桥梁建设, 2017, 47(5), 83.
106 Chen S J, Wu C, Zhang T S, et al. Engineering and Construction, 2021, 35(6), 1216(in Chinese).
陈胜军, 吴成, 张天舒, 等. 工程与建设, 2021, 35(6), 1216.
107 Azari H, Nazarian S, Yuan D. Construction and Building Materials, 2014, 71, 384.
108 Zhang J, Cui D. Journal of Yangtze River Scientific Research Institute, 2018, 35(2), 125.
109 Barnes C L, Trottier J F, Forgeron D. NDT and E International, 2008, 41(6), 427.
110 Chen J, Wu Y, Yang C. NDT and E International, 2019, 106, 1.
111 Orlando L, Pezone A, Colucci A. NDT and E International, 2010, 43(3), 216.
112 Barrile V, Pucinotti R. NDT and E International, 2005, 38(7), 596.
113 Omar T, Nehdi M L. Automation in Construction, 2017, 83, 360.
114 Ma Z, Okamura S. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(5), 546.
115 Rucka M, Wilde K. Engineering Structures, 2006, 28(2), 279.
116 Zaurin R, Necati Catbas F. Structural Health Monitoring, 2011, 10(3), 309.
117 Guo J, Xie X B, Bie R, et al. Personal and Ubiquitous Computing, 2014, 18, 1977.
118 Yin X, Hutchins D A, Diamond G G, et al. Cement and Concrete Research, 2010, 40(12), 1734.
119 Diefenderfer B K, Al-Qadi I L, Yoho J J, et al. MRS Online Procee-dings Library (OPL), 1997, 503, 231.
120 Yan J, Downey A, Cancelli A, et al. Sensors, 2019, 19(8), 1843.
121 Gattulli V, Chiaramonte L. Computer-Aided Civil and Infrastructure Engineering, 2005, 20(2), 95.
122 Alani A M, Aboutalebi M, Kilic G. NDT and E International, 2014, 61, 80.
123 Grosse C, Finck R, Kurz J, et al. In:Proceedings of the EWGAE 2004 Symposium in Berlin. Germany, 2004, pp. 843.
124 Lee S J, Ahn D, You I, et al. Automation in Construction, 2020, 119, 103323.
125 Dumoulin C, Karaiskos G, Sener J Y, et al. Smart Materials and Structures, 2014, 23(11), 115016.
126 Zhang M, Bareille O, Salvia M. Construction and Building Materials, 2019, 225, 196.
127 Du C, Dutta S, Kurup P, et al. Sensors and Actuators A: Physical, 2020, 303, 111728.
128 Chapeleau X, Sedran T, Cottineau L M, et al. Engineering Structures, 2013, 56, 1751.
129 Taheri S. Construction and Building Materials, 2019, 204, 492.
130 Muto N, Yanagida H, Nakatsuji T, et al. Advanced Composite Materials, 1995, 4(4), 297.
131 Han B, Zhang K, Burnham T, et al. Smart Materials and Structures, 2012, 22(1), 015020.
132 Riaz M, Kanwal N. European Journal of Physics, 2019, 40(2), 025502.
133 Saxena S C, Tayal G M. IEEE Transactions on Industrial Electronics and Control Instrumentation, 1981 (1), 37.
134 Villain G, Derobert X, Abraham O, et al. In: Proceedings of the 7th International Symposium on Non-destructive Testing in Civil Enginee-ring. Nantes, France, 2009.
135 Nassr A A, Ahmed W H, El-Dakhakhni W W. Measurement Science and Technology, 2008, 19(7), 075702.
136 Yang D, Wu Z, Yao G, et al. Chemical Engineering Journal, 2021, 425, 131422.
137 Voss A, Pour-Ghaz M, Vauhkonen M, et al. Cement and Concrete Research, 2016, 89, 158.
138 Voss A, Hosseini P, Pour-Ghaz M, et al. Materials and Design, 2019, 181, 107967.
139 Du Z, Tian L, Wang P, et al. Construction and Building Materials, 2022, 357, 129345.
140 Zaki A, Chai H K, Aggelis D G, et al. Sensors, 2015, 15(8), 19069.
141 Dérobert X, Lataste J F, Loche J M, et al. In: Construction Heritage in Coastal and Marine Environments. Portugal, 2008.
142 Gao X, Zhang J, Yang Y, et al. Sensors, 2010, 10(11), 10226.
143 Wang Y, Li Y, Wang F, et al. Construction and Building Materials, 2024, 426, 136156.
144 Steinberg M D, Tkalec B, Steinberg I M. Sensors and Actuators B: Chemical, 2016, 234, 294.
145 Xu C, Li Z, Jin W L. Sensors, 2013, 13(10), 13258.
146 Sodeikat C, Mayer T F, Schießl-Pecka A. In: Proceedings of the 7th FRAMCOS. Korea, 2010.
147 Qiao G, Sun G, Hong Y, et al. NDT and E International, 2011, 44(7), 583.
148 Morris W, Vico A, Vazquez M. Journal of Applied Electrochemistry, 2003, 33, 1183.
149 Shevtsov D, Cao N L, Nguyen V C, et al. Sensors, 2022, 22(9), 3421.
150 Polder R B. Construction and Building Materials, 2001, 15(2-3), 125.
151 Hoshi Y, Koike T, Tokieda H, et al. Journal of the Electrochemical Society, 2019, 166(11), 3316.
152 Gao J, Wu J, Li J, et al. Ndt and E International, 2011, 44(2), 202.
153 Tan C H, Shee Y G, Yap B K, et al. Sensors and Actuators A: Physical, 2016, 246, 123.
154 Qin L, Ren H, Dong B, et al. Applied Acoustics, 2015, 94, 53.
155 Tamhane D, Thalapil J, Banerjee S, et al. Construction and Building Materials, 2022, 342, 128034.
156 Zhang J, Liu C, Sun M, et al. Construction and Building Materials, 2017, 135, 68.
157 Tsukada K, Yoshioka M, Kiwa T, et al. Ndt and E International, 2011, 44(1), 101.
158 ElBatanouny M K, Ziehl P H, Larosche A, et al. Construction and Building Materials, 2014, 58, 46.
159 Kovac J, Alaux C, Marrow T J, et al. Corrosion Science, 2010, 52(6), 2015.
160 Wang Y, Gong F, Ueda T, et al. Procedia Engineering, 2014, 95, 366.
161 Ghasemzadeh F, Rashetnia R, Smyl D, et al. Cement and Concrete Composites, 2016, 70, 119.
162 Gu H, Song G, Dhonde H, et al. Smart Materials and Structures, 2006, 15(6), 1837.
163 Gu H, Song G, Dhonde H, et al. In: Advanced Sensor Technologies for Nondestructive Evaluation and Structural Health Monitoring ii. USA, 2006, pp. 117.
164 Kim J, Kim J W, Park S. In: Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Homeland Security 2014. USA, 2014, pp. 269.
165 Johannesson B. Cement and Concrete Composites, 2010, 32(1), 73.
166 Cao J, Chung D. Cement and Concrete Research, 2002, 32(10), 1657.
167 Wang Z, Zeng Q, Wang L, et al. Journal of Materials in Civil Engineering, 2015, 27(1), 04014109.
168 Pazdera L, Topolar L. Russian Journal of Nondestructive Testing, 2014, 50, 127.
169 Qin L, Li Z. Smart Materials and Structures, 2008, 17(5), 055005.
170 Aktan A, Catbas F N, Grimmelsman K, et al. Journal of Engineering Mechanics, 2000, 126(7), 711.
171 Farrar C R, Worden K. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851), 303.
172 Edwards J R, Gao Z, Wolf H E, et al. Measurement, 2017, 111, 197.
173 Taheri S. Construction and Building Materials, 2019, 204, 492.
174 Hou Y, Jiao R, Yu H. Sensors and Actuators A: Physical, 2021, 318, 112498.
175 Albarbar A, Badri A, Sinha J K, et al. Measurement, 2009, 42(5), 790.
176 Milne D, Le Pen L, Watson G, et al. Procedia Engineering, 2016, 143, 1077.
177 Railway Construction Research Institute, Scientific Research Institute of Ministry of Railways. Standard for assessment of deterioration of railway bridge and tunnel buildings. Pier Foundation: TB/T 2820. 6-1999, China Railway Publishing House Co. LTD, China, 1999(in Chinese).
铁道部科学研究院铁道建筑研究所. 铁路桥隧建筑物劣化评定标准. 墩台基础: TB/T 2820. 6-1999, 中国铁道出版社, 1999.
178 Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Durability evaluation standard for existing concrete structures: GB/T 51355-2019, China Architecture & Building Press, China, 2019(in Chinese).
中华人民共和国住房和城乡建设部. 既有混凝土结构耐久性评定标准: GB/T 51355-2019, 中国建筑工业出版社, 2019.
179 China Engineering Construction Standardization Association Standard. Durability evaluation standard for concrete structures: CECS 220:2007, China Architecture and Construction Press, China, 2007(in Chinese).
中国工程建设标准化协会标准. 混凝土结构耐久性评定标准: CECS 220 :2007, 中国建筑工业出版社, 2007.
180 Japan Civil Engineering Society. Standard specification design method of concrete structure: JSCE 2002. 2002.
181 ISO 16204. Durability-Service life design of concrete structures, 2012.
182 ACI 210R-93. Erosion of concrete in hydraulic structures, 1993.
183 ACI 222R-01. Protection of metals in concrete against corrosion. 2001.
184 ACI 222. 2R-01. Corrosion of prestressing steels, 2001.
185 Angst U M. Materials and Structures, 2018, 51(1), 4.
186 Cao Y, Gehlen C, Angst U, et al. Cement and Concrete Research, 2019, 117, 58.
187 Ministry of Housing and Urban-Rural Development of the People’s Republic of China, General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Technical standard for on-site inspection of Concrete structures:GB/T 50784-2013, China Architecture and Construction Press, China, 2013(in Chinese).
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 混凝土结构现场检测技术标准: GB/T 50784-2013, 中国建筑工业出版社, 2013.
188 ACI 207. 3R-94. Practices for evaluation of concrete in existing massive structures for service conditions, 1994.
189 ACI224. 1R-07. Causes, evaluation, and repair of cracks in concrete structures, 2007.
190 Zheng X, Wang Y, Zhang S, et al. Construction and Building Materials, 2022, 330, 127254.
191 Wang R, Hu Z, Li Y, et al. Construction and Building Materials, 2022, 321, 126371.
192 Wen J, Wan Y, Xu C, et al. Journal of Building Engineering, 2024, 96, 110664.
193 Cui S, Liu P, Cui E, et al. Construction and Building Materials, 2018, 173, 124.
194 Liu P, Cui S, Li Z, et al. Construction and Building Materials, 2019, 207, 329.
195 Xie J T, Yu Y Y. Journal of Railway Engineering Society, 2013, 30(12), 69(in Chinese).
谢君泰, 余云燕. 铁道工程学报, 2013, 30(12), 69.
196 Liu P. Properties research and mechanism analysis of shotcrete in a hot-dry environment of high-temperature geothermal tunnel. Ph. D. Thesis, Southwest Jiaotong University, China, 2021(in Chinese).
刘品. 高地温隧道干热环境喷射混凝土性能研究及机理分析. 博士学位论文, 西南交通大学, 2021.
197 Wang M, Hu Y, Wang Q, et al. Construction and Building Materials, 2019, 229, 116989.
198 Dong H L, Li H J, Wen J X, et al. Materials Reports, 2024, 38(19), 90(in Chinese).
董昊良, 李化建, 温家馨, 等. 材料导报, 2024, 38(19), 90.
199 Sun Y N. In:Academic Seminar on the 10th Anniversary of Qinghai-Tibet Railway Operation. China, 2016, pp. 45(in Chinese).
孙永宁. 青藏铁路运营十周年学术研讨会. 2016, pp. 45.
200 Zhang S H, Zhang J Z, Li S P, et al. China Railway, 2016(5), 21(in Chinese).
张寿红, 张建忠, 李顺平, 等. 中国铁路, 2016(5), 21.
201 Zhou Y L. Research on cracking causes and repairing technology application of concrete piers in high altitude cold regin. Master’s Thesis, Lanzhou Jiaotong University, China, 2014(in Chinese).
周有禄. 高寒地区桥墩混凝土开裂原因及修补技术应用研究. 硕士学位论文, 兰州交通大学, 2014.
202 Zhong X H, Li H J, Ye Y S, et al. Proceedings of the academic symposium on the 10th anniversary of Qinghai-Tibet railway operation. China Academy of Railway Sciences, 2016, pp. 12(in Chinese).
仲新华, 李化建, 叶阳升, 等. 青藏铁路运营十周年学术研讨会论文集. 中国铁道科学研究院, 2016, pp. 12.
203 Dong H L, Li H J, Shi H N, et al. Journal of the Chinese Ceramic Society, 2024, 52(11), 3394(in Chinese).
董昊良, 李化建, 石贺男, 等. 硅酸盐学报, 2024, 52(11), 3394.
204 Wang R, Zhang Q, Li Y. Construction and Building Materials, 2022, 319, 126045.
205 Fan J, Zhu H, Yi C, et al. AIP Advances, 2019, 9(11), 115019.
206 Song L, Liu H, Cui C, et al. Construction and Building Materials, 2020, 237, 117528.
207 Zeng Z, Huang X, Yan B, et al. Construction and Building Materials, 2021, 303, 124465.
208 Dong H, Li H, Shi H, et al. Engineering Failure Analysis, 2023, 153, 107620.
[1] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[2] 贡力, 赵学昊, 许天乐, 卜延忠, 杨腾腾, 秦军, 党丹丹. 硫酸盐环境下沙漠砂混凝土抗冻耐久性及界面微观结构研究[J]. 材料导报, 2025, 39(22): 24100076-10.
[3] 张盼盼, 吕忠. 内置修复剂轻骨料水泥基材料自修复性能及机理研究进展[J]. 材料导报, 2025, 39(19): 24080181-9.
[4] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[5] 梁卓悦, 余波, 蔡盛源, 解威威. 基于材料成本与碳排放成本最小化的低碳混凝土配合比优化设计方法[J]. 材料导报, 2025, 39(14): 23120180-6.
[6] 王长龙, 付兴帅, 杨彩霞, 张凯帆, 白云翼, 路璐, 高占须, 郑永超, 刘治兵, 翟玉新, 刘枫. 钒钛铁尾矿制备矿山修复混凝土及性能研究[J]. 材料导报, 2025, 39(14): 24050044-6.
[7] 麻春英, 高俊, 沈明学. 超疏水表面机械稳定性研究现状及发展趋势[J]. 材料导报, 2025, 39(14): 24090242-11.
[8] 管焓宇, 张登宇, 欧阳金平, 张伟强, 刘志勇. 高性能水性环氧涂层及涂层钢筋应用研究进展[J]. 材料导报, 2025, 39(13): 24080081-10.
[9] 李根, 袁新璐, 张晓宇, 唐旭旺, 任平弟. Cu-Ni-Si合金在不同环境介质中的微动磨损行为研究[J]. 材料导报, 2025, 39(13): 24050227-8.
[10] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[11] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[12] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[13] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[14] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[15] 靳红华, 任青阳, 肖宋强, 任小坤. 模拟酸雨侵蚀环境下悬臂抗滑桩耐久性极限寿命预测[J]. 材料导报, 2024, 38(5): 22070148-8.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[5] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed