Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050227-8    https://doi.org/10.11896/cldb.24050227
  金属与金属基复合材料 |
Cu-Ni-Si合金在不同环境介质中的微动磨损行为研究
李根1, 袁新璐2,*, 张晓宇1, 唐旭旺1, 任平弟1
1 西南交通大学机械工程学院,成都 610031
2 成都大学机械工程学院,成都 610106
Fretting Wear Behavior of Cu-Ni-Si Alloy in Different Environmental Media
LI Gen1, YUAN Xinlu2,*, ZHANG Xiaoyu1, TANG Xuwang1, REN Pingdi1
1 School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China
2 School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
下载:  全 文 ( PDF ) ( 57095KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Cu-Ni-Si合金是高速铁路接触网系统中紧固件及线夹零部件的主要制备材料,长期承受复杂应力和疲劳载荷,Cu-Ni-Si合金零部件的紧固配合表面发生微动磨损现象,并在大气污染物及酸雨的侵蚀作用下进一步发生微动腐蚀。本工作在微动腐蚀试验机上开展了Cu-Ni-Si合金微动磨损和微动腐蚀试验,对比研究了Cu-Ni-Si合金在常温大气环境、纯水溶液及pH=3和pH=5的酸性NaCl溶液中的微动磨损机制和微动腐蚀行为。结果表明,大气环境下平均摩擦系数长时间处在较高水平且都超过0.8,而水溶液环境中平均摩擦系数较大气环境显著减小且都低于0.4,尤其在pH=3的酸性NaCl溶液中平均摩擦系数最小约为0.2;与摩擦系数规律类似,在Fn=80 N、D=60 μm的条件下,磨损深度在常温大气环境下最大约为18 μm,而在水溶液中磨损深度显著减小,在pH=3的酸性NaCl溶液中最小约为10 μm;在常温大气环境下,微动磨损主要以粘着磨损、磨粒磨损和氧化磨损为主,酸性溶液中材料损失方式主要为Si3N4陶瓷球凸峰的切削和微动腐蚀;在酸性腐蚀介质中,微动加速了腐蚀,而腐蚀却抑制了磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李根
袁新璐
张晓宇
唐旭旺
任平弟
关键词:  高速铁路接触网系统  Cu-Ni-Si合金  微动磨损  微动腐蚀    
Abstract: Cu-Ni-Si alloy is the main preparation material for fasteners and clamp parts in high-speed railway catenary systems. After long-term exposure to complex stresses and fatigue loads, fretting wear occurs on the fastening and mating surfaces of Cu-Ni-Si alloy parts, and further fretting corrosion occurs under the erosion of atmospheric pollutants and acid rain. In this study, fretting wear and fretting corrosion tests of Cu-Ni-Si alloy were carried out on a fretting corrosion tester. The fretting wear mechanism and fretting corrosion behavior of Cu-Ni-Si alloy in atmospheric environment, pure aqueous solution and acidic NaCl solution of pH=3 and pH=5 were studied comparatively. The results show that the average friction coefficient in the atmospheric environment is at a high level for a long time and is more than 0.8, while the average friction coefficient in the aqueous solution environment is significantly lower than that in the atmospheric environment, both of which are lower than 0.4. Especially in the acidic NaCl solution of pH=3, the average friction coefficient is about 0.2. Under the condition of Fn=80 N,D=60 μm, the maximum wear depth is about 18 μm in atmospheric environment at room temperature. However, the wear depth decreases significantly in aqueous solution, especially in acidic NaCl solution of pH=3, which is about 10 μm. In the atmospheric environment, the fretting wear was mainly adhesive wear, abrasive wear and oxidation wear, while the material loss in acid solution was induced by the cutting wear of Si3N4 ceramic ball’s convex peak and fretting corrosion. In acid corrosion medium, fretting accelerates corrosion, while corrosion suppresses wear.
Key words:  high-speed railway catenary system    Cu-Ni-Si alloy    fretting wear    fretting corrosion
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TH117.1  
基金资助: 国家自然科学基金(52305182)
通讯作者:  *袁新璐,成都大学机械工程学院讲师,硕士研究生导师。目前主要研究领域为摩擦学与表面工程、微动磨损与微动疲劳。yuanxinlu@cdu.edu.cn   
作者简介:  李根,现为西南交通大学机械工程学院博士研究生,在任平弟教授的指导下进行研究。目前主要研究领域为金属材料微动腐蚀磨损。
引用本文:    
李根, 袁新璐, 张晓宇, 唐旭旺, 任平弟. Cu-Ni-Si合金在不同环境介质中的微动磨损行为研究[J]. 材料导报, 2025, 39(13): 24050227-8.
LI Gen, YUAN Xinlu, ZHANG Xiaoyu, TANG Xuwang, REN Pingdi. Fretting Wear Behavior of Cu-Ni-Si Alloy in Different Environmental Media. Materials Reports, 2025, 39(13): 24050227-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050227  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050227
1 Jin M, Lin K C, Shi W, et al.Transportation Research Part A:Policy and Practice, 2020, 138, 158.
2 Tan D Q, Mo J L, Peng J F, et al.Journal of Southwest Jiaotong University, 2018, 53(3), 610(in Chinese).
谭德强, 莫继良, 彭金方, 等. 西南交通大学学报, 2018, 53(3), 610.
3 Lei Q, Xiao Z, Hu W, et al.Materials Science and Engineering:A, 2017, 697, 37.
4 Lei Q, Li Z, Wang J, et al.Materials & Design, 2013, 51, 1104.
5 Jia L, Lin X, Xie H, et al.Materials Letters, 2012, 77, 107.
6 Lockyer S A, Noble F W.Materials Science and Technology, 1999, 15(10), 1147.
7 Zhou S Y.China Railway, 2018(9), 44(in Chinese).
周少喻. 中国铁路, 2018(9), 44.
8 Pan L K, Chen L M, Yuan Y, et al.Electric Railway, 2023, 34(S1), 129(in Chinese).
潘利科, 陈立明, 袁远, 等. 电气化铁道, 2023, 34(S1), 129.
9 Zhao D, Dong Q M, Liu P, et al.Materials Science and Engineering:A, 2003, 361(1), 93.
10 Zhao D M, Dong Q M, Liu P, et al.Materials Chemistry and Physics, 2003, 79(1), 81.
11 Suzuki S, Shibutani N, Mimura K, et al.Journal of Alloys and Compounds, 2006, 417(1-2), 116.
12 Monzen R, Watanabe C.Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2008, 483-484, 117.
13 Lei Q, Li Z, Dai C, et al.Materials Science and Engineering:A, 2013, 572, 65.
14 Wang W, Kang H, Chen Z, et al.Materials Science and Engineering:A, 2016, 673, 378.
15 Yang B, Wu M Z, Li X, et al.International Journal of Fatigue, 2018, 116, 118.
16 Zhang J W, Li X, Yang B, et al.Surface & Coatings Technology, 2019, 359, 16.
17 Atapek Ş H, Pantelakis S G, Polat Ş, et al.Theoretical and Applied Fracture Mechanics, 2016, 83, 60.
18 Dong Q, Zhao D, Liu P, et al.Journal of Materials Science and Technology, 2004, 20(1), 99.
19 Goto M, Han S Z, Lim S H, et al.International Journal of Fatigue, 2016, 87, 15.
20 Huang F, Ma J, Ning H, et al.Materials Letters, 2003, 57(13), 2135.
21 Kim H G, Lee T W, Kim S M, et al.Metals and Materials International, 2013, 19(1), 61.
22 Lee S, Matsunaga H, Sauvage X, et al.Materials Characterization, 2014, 90, 62.
23 Sun Z, Laitem C, Vincent A.Materials Science and Engineering:A, 2011, 528(19), 6334.
24 Shan Y Q, Zhang Y M, Zhang C M, et al.Transactions of Materials and Heat Treatment, 2024, 45(1), 95(in Chinese).
单运启, 张彦敏, 张朝民, 等. 材料热处理学报, 2024, 45(1), 95.
25 Zhang G S, Zhang J, Liu S M.Atmospheric Research, 2007, 85(1), 84.
26 Xu Z, Wu Y, Liu W J, et al.Atmospheric Research, 2015, 164-165, 278.
27 Zhou Z R, Nakazawa K, Zhu M H, et al.Tribology International, 2006, 39(10), 1068.
28 Salim M A, Khattak G D, Tabet N, et al.Journal of Electron Spectroscopy and Related Phenomena, 2003, 128(1), 75.
29 Khattak G D, Mekki A, Gondal M A.Applied Surface Science, 2010, 256(11), 3630.
30 Vernon G A, Stucky G, Carlson T A.Inorganic Chemistry, 1976, 15(2), 278.
31 Haber J, Machej T, Ungier L, et al.Journal of Solid State Chemistry, 1978, 25(3), 207.
32 Rahmani H, Meletis E I.Applied Surface Science, 2019, 497, 143759.
33 Feng Y, Siow K S, Teo W K, et al.Corrosion, 1997, 53(5), 389.
[1] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[2] 何燕妮, 俞树荣, 李淑欣, 尘强. TC4合金微动磨损部分滑移区摩擦参数的演变[J]. 材料导报, 2021, 35(14): 14096-14100.
[3] 孔焕平, 姜涛, 刘昌奎, 应少军, 赵凯. 多轴复杂应力形式下TB6高强钛合金耳片的微动疲劳断裂研究[J]. 材料导报, 2020, 34(14): 14134-14139.
[4] 赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
[5] 张越, 何晓聪, 张龙, 张先炼. 钛合金压印接头疲劳性能与微观分析[J]. 《材料导报》期刊社, 2017, 31(6): 81-85.
[6] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[7] 赵伦, 何晓聪, 张先炼, 张龙, 程强. TA1钛合金单搭自冲铆接头微动磨损机理*[J]. 《材料导报》期刊社, 2017, 31(2): 73-76.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed