Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 72-75    https://doi.org/10.11896/j.issn.1005-023X.2017.06.015
  材料研究 |
轻合金自冲铆微动磨损及疲劳性能研究
赵伦, 何晓聪, 张先炼, 张龙, 高爱凤
昆明理工大学机电工程学院, 昆明 650500
Fretting Wear and Fatigue Behavior of Self-piercing Riveting of Lightweight Alloys
ZHAO Lun, HE Xiaocong, ZHANG Xianlian, ZHANG Long, GAO Aifeng
Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 1653KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选择4组轻合金自冲铆进行疲劳实验,用扫描电子显微镜和能谱仪对其断口进行微动磨损机理分析,并系统地研究了接头疲劳寿命和失效形式的影响因素。结果表明,下板与钉腿区的微动磨损是导致下板沿纽扣断裂和铆钉断裂的主要原因,两板间的微动磨损是导致上板靠钉头断裂的主要原因;微动磨屑主要成分为金属板材氧化物,并对微动磨损起缓冲作用。增加板厚可提高接头疲劳寿命,且疲劳载荷较大时寿命提高更为显著;增加板强可提高接头疲劳寿命,且寿命提高程度受疲劳载荷影响较小。增加板厚使失效形式从上板断裂变为下板断裂,增加板强使失效形式从板材断裂变为铆钉断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵伦
何晓聪
张先炼
张龙
高爱凤
关键词:  轻合金  自冲铆  微动磨损  疲劳寿命  疲劳失效形式    
Abstract: Four groups of self-piercing riveting (SPR) of lightweight alloys were chose to perform a fatigue test.Scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDX) were adopted to observe the fracture surface and analyze the fretting wear mechanism further.The impact factors of fatigue life and fatigue failure mode of the joints were also analyzed systematically. Results exhibited that bottom substrate fracture along the button and rivet fracture were mainly caused by fretting wear occurred in an interface between bottom substrate and rivet leg, upper substrate fracture close to rivet head was primarily caused by the fretting wear occurred in a riveting interface between two sheets. The main composition of fretting debris was the oxide of metal substrate, and the debris had buffering effect in fretting wear process. Increase substrate thickness could enhance fatigue life, especially when fatigue load was high. Augment substrate strength was able to improve fatigue life, and the increase of fatigue life was influen-ced barely by fatigue load. The fatigue failure mode changed from upper substrate to bottom substrate owing to increase of substrate thickness, fatigue failure mode transformed from substrate fracture to rivet fracture due to augment of substrate strength.
Key words:  lightweight alloy    self-piercing riveting (SPR)    fretting wear    fatigue life    fatigue failure mode
出版日期:  2017-03-25      发布日期:  2018-05-02
基金资助: 国家留学基金委(201500090194);国家自然科学基金(51565023;51565022);2015年云南省博士研究生学术新人基金(2013603001)
通讯作者:  何晓聪:男,1955年生,博士,教授,博士研究生导师,从事薄板材料连接新技术研究,E-mail:xiaocong_he@126.com   
作者简介:  赵伦:男,1988年生,博士研究生,主要研究方向为薄板材料连接新技术,E-mail:lun_zhaokmust@163.com
引用本文:    
赵伦, 何晓聪, 张先炼, 张龙, 高爱凤. 轻合金自冲铆微动磨损及疲劳性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 72-75.
ZHAO Lun, HE Xiaocong, ZHANG Xianlian, ZHANG Long, GAO Aifeng. Fretting Wear and Fatigue Behavior of Self-piercing Riveting of Lightweight Alloys. Materials Reports, 2017, 31(6): 72-75.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.015  或          https://www.mater-rep.com/CN/Y2017/V31/I6/72
1 Cole G S, Sherman A M. Lightweight materials for automotive applications [J]. Mater Charact,1995,35(1):3.
2 He X C, Zhao L, Deng C J, et al. Self-piercing riveting of similar and dissimilar metal substrates of aluminum alloy and copper alloy [J]. Mater Des,2015,65:923.
3 Li D,Han L,Thomnton M, et al. Influence of rivet to sheet edge distance on fatigue strength of self-piercing riveted aluminum joints [J]. Mater Sci Eng A,2012,558:242.
4 He X C, Gu F X, Ball A. A review of numerical analysis of friction stir welding [J]. Prog Mater Sci,2014,65:1.
5 He X C, Wang Y F, Lu Y, et al. Self-piercing riveting of similar and dissimilar titanium sheet materials [J]. Int J Adv Manuf Tech-nol,2015,80:2105.
6 Xing Baoying. Investigation of forming mechanism and mechanical property of self-pierce riveted joints [D]. Kunming: Kunming University of Science and Technology,2014(in Chinese).
邢保英. 自冲铆连接机理及力学性能研究 [D]. 昆明:昆明理工大学,2014.
7 Sui Bo,Du Dong,Chang Baohua, et al. A review on the development of self-piercing riveting technology for lightweight vehicle body [J]. Autom Eng,2006,28(1):85(in Chinese).
岁波,都东,常保华,等. 轻合金车身自冲铆连接技术的发展 [J]. 汽车工程,2006,28(1):85.
8 Iyer K,Brittman F L,Hu S J,et al. Fatigue and fretting of self-pier-cing riveted joints [C]//ASME 2002 International Mechanical Engineering Congress and Exposition.New Orlean,LA,2002:401.
9 Han L,Chrysanthou A,O’Sullivan J M. Fretting behavior of self-piercing riveted aluminium alloy joints under different interfacial conditions [J]. J Mater Des,2006,27(3):200.
10 Chen Y K,Han L,Chrysanthou A,et al.Fretting wear in self-pier-cing riveted aluminium alloy sheet [J]. Wear,2003,255:1463.
11 Xing B Y,He X C,Zeng K,et al. Mechanical properties of self-pier-cing riveted joints in aluminum alloy 5052 [J]. Int J Adv Manuf Technol,2014,75:351.
12 Deng Chengjiang,He Xiaocong,Xing Baoying, et al. Mechanical properties of lap self-piercing riveted joints in dissimilar metal sheets of aluminum and copper [J]. J Jilin University:Eng Technol Ed,2015,45(2):473(in Chinese).
邓成江,何晓聪,邢保英,等. 铝与铜异质板材自冲铆搭接接头的力学性能研究 [J]. 吉林大学学报:工学版,2015,45(2):473.
13 Han L,Young K W,Chrysanthou A,et al. The effect of pre-straining on the mechanical behaviour of self-piercing riveted aluminium alloy sheets [J]. Mater Des,2006,27:1108.
14 Zhang Ming. Research on failure mechanism and control technology of fretting fatigue [D]. Nanjing:Nangjing University of Aeronautics and Astronautics,2013(in Chinese).
张明. 微动疲劳损伤机理及其防护对策的研究 [D]. 南京:南京航空航天大学,2013.
15 周仲荣,Leo Vincent. 微动磨损 [M]. 北京: 科学出版社,2002.
[1] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[2] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[3] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[4] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[5] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[6] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[7] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[8] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[9] 张吉哲, 郭晨晨, 胡学亮, 何亮, 吕鑫, 樊超, 姚占勇. 富油沥青砂浆再生设计与性能恢复规律研究[J]. 材料导报, 2023, 37(24): 22100098-7.
[10] 吴涛, 姚卫星, 黄杰. 纤维增强树脂基复合材料超高周疲劳研究进展[J]. 材料导报, 2022, 36(6): 20050117-9.
[11] 李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱. 基于无壁型微脉管的光能损伤自修复复合材料[J]. 材料导报, 2022, 36(2): 20090371-5.
[12] 冯震, 邢保英, 何晓聪, 曾凯, 余康. 盐性环境下铝合金自冲铆接头的疲劳特性及寿命预测[J]. 材料导报, 2022, 36(1): 20100065-5.
[13] 张雷, 庄毅, 李姗姗, 唐毓婧, 李静, 罗欣. 不同工况下车用复合材料板簧的动态疲劳测试研究[J]. 材料导报, 2021, 35(z2): 583-588.
[14] 孙朋飞, 姚丹丹, 张鹏林, 王董琪琼, 侯嘉鹏, 王强, 张哲峰. 金属焊接接头疲劳寿命延长技术综述[J]. 材料导报, 2021, 35(9): 9059-9068.
[15] 龚园军, 张军, 毛江鸿, 金伟良, 谭昱, 罗林. 电化学修复后不同含氢钢筋的低周疲劳性能试验研究[J]. 材料导报, 2021, 35(6): 6146-6150.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed