Abstract: Guided by the urgent need of wear resistance, high strength and fatigue resistance of automotive titanium alloy parts in the whole life cycle, based on surface engineering and composite multi-component structure design, the Si/Cu-DLC composite films with different acetylene gas flow rate were deposited on automotive titanium alloy by microwave ECR enhanced magnetron sputtering technology. The structure, residual stress, hardness, adhesive force and wear properties of these films were studied by X-ray diffraction, Raman spectrometer, profilometry technique, nano-indenter and wear test. The results show that the Si and Cu are successfully doped into DLC films, the residual stress of the Si/Cu-DLC composite films decreases with the increase of acetylene gas flow rate. The sp3 hybrid bond content first increases and then decreases with the increases of acetylene flow rate. The Si/Cu-DLC composite films with acetylene gas flow rate of 30 sccm has a high sp3 hybrid bond content and hardness, the best adhesion strength and wear resistance, excellent toughness and crack deformation resistance due to the high H/E and H3/E2 ratios, effectively improving the service life of urgent titanium alloy. The findings can provide the reference and theoretical basis for the material design and selection of wear resistant coatings for automotive titanium alloy.
徐照英, 苏永要, 张腾飞, 王锦标, 吴杰. 钛合金表面硅铜共掺杂类金刚石复合薄膜微观结构与摩擦学性能研究[J]. 材料导报, 2025, 39(19): 24080234-6.
XU Zhaoying, SU Yongyao, ZHANG Tengfei, WANG Jinbiao, WU Jie. Study on Microstructure and Tribological Properties of Silicon-Copper Codoped Diamond-like Composite Films on Titanium Alloy. Materials Reports, 2025, 39(19): 24080234-6.
1 Fang Xiaofen. Chinese Automobile Industry, 2012(8), 10 (in Chinese). 方晓汾. 中国汽车界, 2012(8), 10. 2 Wu Zhaohui. Internal Combustion Engine and Ingredients, 2022(23), 106 (in Chinese). 吴兆辉. 内燃机与配件, 2022(23), 106. 3 Ottria L, Lauritano D, Bassi M A. Journal of Biological Regulators and Homeostatic Agents, 2018, 32, 81. 4 Wang Hui, Zhao Kongxun, Chu Xingrong, et al. Results in Physics, 2019, 13, 102. 5 Sophia Raaymann, Stefan Spinler. Transportation Research Part E, Logistics and Transportation Review, 2024, 192, 103792 6 Ferrari A C, Robertson J. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004, 362(1824), 2477. 7 Erdemir A. Tribology International, 2004, 37(11), 1005. 8 Jacek Grabarczyk, Justyna Gaj, Bartosz Pazik, et al. Tribology International, 2021, 153, 106560 9 Shao Wei, Zhou Yefei, Shi Zhijun, Rao Lixiang, et al. Materials Today Communications, 2020, 23, 100946. 10 Yusei Yamada, Motoyuki Murashima, Noritsugu Umehara, et al. Tribology International, 2022, 169, 107486. 11 Wei Xubing, Cao Xueqian, Yin Pingmei, et al. Diamond and Related Materials, 2022, 123, 108852. 12 Dorota Bociaga, Anna Sobczyk-Guzenda, Witold Szymanski, et al. Chemical Analysis and Biological Evaluation. Vacuum, 2017, 143, 395. 13 Li Haitao, Sun Pengfei, Qi Antai, et al. Journal of Aeronautical Materials, 2023, 49, 32193. 14 Li Pei, Zhang Xinru, Chen Shi, et al. Diamond and Related Materials, 2023, 140, 110478 15 Yeong Ju Jo, Teng Fei Zhang, Myoung Jun Son, et al. Applied Surface Science, 2018, 433, 1184. 16 Myoung Jun Son, Teng Fei Zhang, Yeong Ju Jo, et al. Surface & Coatings Technology, 2017, 329, 77. 17 Xiaowei Xu, Peng Guo, Leslie Ching Ow Tiong, et al. Journal of Physics D, Applied Physics, 2017, 50, 175601. 18 Fan Youyu, Li Guang, Xia Yuan. Key Engineering Materials, 2013, 531-532, 523. 19 He Dongqing, Shang Lunlin, Lu Zhibin, et al. Surface & Coatings Technology, 2017, 329, 11. 20 Constantinou M, Pervolaraki M, Koutsokeras L, et al. Surface & Coatings Technology, 2017, 330, 185. 21 Escudeiro A, Figueiredo N M, Polcar T, et al. Applied Surface Science, 2015, 325, 64. 22 Wang Junjun, Ma Jianjun, Huang Weijiu, et al. Surface & Coatings Technology, 2017, 316, 22. 23 Ahmed S F, Alam M S, Mukherjee N. Physica E, Low-dimensional Systems and Nanostructures, 2018, 97, 120. 24 Liu Yi, Guo Peng, He Xiaoyan, et al. Diamond & Related Materials, 2016, 69, 144. 25 Guo Peng, Li Xiaowei, Sun Lili, et al. Thin Solid Films, 2017, 640, 45. 26 Lukasz Kolodziejczyk, Witold Szymanski, Damian Batory, et al. Diamond & Related Materials, 2016, 67, 8. 27 Zhang Sam, Ali Nasar. London, Imperial College Press, 2007, 111, 166. 28 Mohammadinia E, Elahi S M, Shahidi S. Materials Science in Semiconductor Processing, 2018, 74, 7 29 Rajkumar Dey, Sukdev Dolai, Shamima Hussain, et al. Diamond & Related Materials, 2018, 82, 70. 30 Kwang-Leong Choy, Emmanuelle Felix. Matenais science and Engineering A, 2000, 278, 162. 31 Mandal P, Ehiasarian A P, Hovsepian P E. Applied Surface Science, 2016, 366, 260. 32 Nakao S, Choi J, Kim J, Miyagawa S. Diamond & Related Materials, 2006, 15(4), 884. 33 Andrea Carlo Ferrari. Diamond and Related Materials, 2002, 11(3-6), 1053. 34 Robertson J. Diamond and Related Materials, 2004, 13(4-8), 1558. 35 Lan H, Kato T. Journal Nanoscience and Nanotechnology, 2013, 13(2), 1063. 36 Dwivedi N, Kumar S, Malik H K, et al. Journal of Physics and Chemistry of Solids, 2012, 73(2), 308. 37 Ahmed S F, Alam M S, Mukherjee N. Physica E, Low-dimensional Systems and Nanostructures, 2018, 97, 120. 38 Nakao S, Choi J, Kim J, et al. Diamond and Related Materials, 2006, 15(4), 884. 39 Lusk D, Gore M, Boardman W, et al. Diamond and Related Materials, 2008, 17(7), 1613. 40 Hikaru O, Shinya S. Tribology International, 2017, 113, 399. 41 Musil J, Kunc F, Zeman H, et al. Surface and Coatings Technology, 2002, 154(2-3), 304. 42 Leyland A, Matthews A. Wear, 2000, 246(1), 5. 43 Marciano F R, Bonetti L F, Pessoa R S, et al. Diamond & Related Materials, 2008, 17(7-10), 1674. 44 Mohammad S K, Zhi F Z, Zong H X, et al. Journal of Materials Science & Technology, 2021, 65, 108. 45 Bertran E, Corbella C, Pinyol A, et al. Diamond and Related Materials, 2003, 12(3-7), 1008.