Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24080219-7    https://doi.org/10.11896/cldb.24080219
  无机非金属及其复合材料 |
非饱和水工混凝土冻融劣化微观孔隙结构与宏观性能关系研究
黄耀英1,*, 方晨1, 邵成羽1,2, 李泽鹏1, 朱赵辉3
1 三峡大学水利与环境学院,湖北 宜昌 443002
2 长江水利委员会机关服务中心,武汉 430010
3 中国水利水电科学研究院,北京 100038
Study on the Relationship Between Microscopic Pore Structure and Macroscopic Properties of Unsaturated Hydraulic Concrete Under Freeze-Thaw Deterioration
HUANG Yaoying1,*, FANG Chen1, SHAO Chengyu1,2, LI Zepeng1, ZHU Zhaohui3
1 College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, Hubei, China
2 Agencies Service Center of Changjiang Water Resources Commission, Wuhan 430010, China
3 China Institute of Water Resources and Hydropower Research, Beijing 100038, China
下载:  全 文 ( PDF ) ( 12904KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了非饱和水工混凝土冻融劣化微观孔隙结构与宏观力学性能之间的关系。设计开展了三种不同饱和度(85%~91.7%、91.7%~95%、95%~100%)水工混凝土密封冻融和水冻水融试验,测试获得了经历三种不同冻融循环温度(-18~6 ℃、-10~6 ℃、-5~6 ℃)下水工混凝土抗压和劈拉强度宏观劣化值,同时基于氮吸附法检测了砂浆区域的微观孔隙结构参数,进而回归分析了微观孔隙结构与宏观力学性能之间的关系,最后建立了非饱和水工混凝土冻融劣化预测模型。结果表明,密封冻融和水冻水融宏-微观性能的劣化规律相似,但密封冻融组的劣化程度小于水冻水融组。冻融劣化后的非饱和水工混凝土强度与平均孔径、总孔隙量和总孔隙率负相关,而与分形维数正相关,基于冻融劣化后的混凝土砂浆的分形维数与无害孔体积分数可以较准确预测非饱和水工混凝土的强度性能,模型复相关系数分别达到0.978和0.951。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄耀英
方晨
邵成羽
李泽鹏
朱赵辉
关键词:  非饱和水工混凝土  冻融损伤  宏-微观性能  预测模型    
Abstract: In this study, the relationship between microscopic pore structure and macroscopic mechanical properties of unsaturated hydraulic concrete under freeze-thaw deterioration was investigated. The sealed freeze-thaw test with three different saturations (85%~91.7%, 91.7%~95%, 95%~100%) and water-freeze-thaw test of hydraulic concrete were designed and carried out. The macroscopic degradation values of compressive and splitting strength of hydraulic concrete under three different freeze-thaw cycle temperatures (-18~6 ℃, -10~6 ℃, -5~6 ℃ ) were obtained. In addition, the corresponding microscopic pore structure parameters were detected based on the nitrogen adsorption method. Then the relationship between microscopic pore structure and macroscopic mechanical properties was analyzed by regression. Finally, a prediction model of freeze-thaw deterioration of unsaturated hydraulic concrete was established. The results show that the deterioration rule of macro and micro properties of sealed freeze-thaw group is similar to that of water-freeze-thaw group, but the deterioration amplitude of sealed freeze-thaw group is smaller than that of water-freeze-thaw group. The strength of unsaturated hydraulic concrete after freeze-thaw deterioration is negatively correlated with average pore size, total pore volume and total porosity, but positively correlated with fractal dimension. Based on the fractal dimension and harmless pore volume fraction of concrete mortar after freeze-thaw deterioration, the strength performance of unsaturated hydraulic concrete can be accurately predicted, the multiple correlation coefficients of the model were 0.978 and 0.951, respectively.
Key words:  unsaturated hydraulic concrete    freeze-thaw damage    macro-micro performance    prediction model
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TV41  
基金资助: 国家自然科学基金(52179135;52239009)
通讯作者:  *黄耀英,博士,三峡大学水利与环境学院教授、博士研究生导师。目前主要从事水工程安全监控、长效服役试验与数值计算等方面的研究工作。huangyaoying@ctgu.edu.cn   
引用本文:    
黄耀英, 方晨, 邵成羽, 李泽鹏, 朱赵辉. 非饱和水工混凝土冻融劣化微观孔隙结构与宏观性能关系研究[J]. 材料导报, 2025, 39(19): 24080219-7.
HUANG Yaoying, FANG Chen, SHAO Chengyu, LI Zepeng, ZHU Zhaohui. Study on the Relationship Between Microscopic Pore Structure and Macroscopic Properties of Unsaturated Hydraulic Concrete Under Freeze-Thaw Deterioration. Materials Reports, 2025, 39(19): 24080219-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080219  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24080219
1 Ge X L, Ke M Y, Liu W B, et al. Materials Reports, 2024, 38 (12), 111 (in Chinese).
戈雪良, 柯敏勇, 刘伟宝, 等. 材料导报, 2024, 38(12), 111.
2 Qin Y, Xue C, Li Y, et al. Journal of Hydroelectric Engineering, 2024, 43(2), 110 (in Chinese).
覃源, 薛存, 李遥, 等. 水力发电学报, 2024, 43(2), 110.
3 Yao K F, Tian S G, Qi Y N, et al. Journal of Hydraulic Engineering, 2023, 54(6), 717 (in Chinese).
姚可夫, 田始光, 漆一宁, 等. 水利学报, 2023, 54(6), 717
4 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete:GB/T 50082. Standards Press of China, China, 2009 (in Chinese).
中华人民共和国国家质量监督检验检疫总局. 普通混凝土长期性能和耐久性能试验方法标准:GB/T 50082. 中国标准出版社, 2009.
5 ASTM International. Standard test method for resistance of concrete to rapid freezing and thawing:ASTM C666/C666M. West Conshohocken, PA, 2015.
6 Zhang X X, Huang L, Liu W Q, et al. Concrete, 2024(6), 138 (in Chinese).
张鑫鑫, 黄靓, 刘文琦, 等. 混凝土, 2024(6), 138.
7 Guan X, Long X, Ding S, et al. Materials Reports, 2024, 38(16), 22080144 (in Chinese)
关虓, 龙行, 丁莎, 等, 材料导报, 2024, 38(16), 22080144.
8 Song B F, Wang L, Li H Y. Journal of Eastern Liaoning University (Natural Science), 2023, 30(2), 123 (in Chinese).
宋宝峰, 王丽, 李和玉. 辽东学院学报(自然科学版), 2023, 30(2), 123.
9 Sun H R, Zou C X, Xue H J, et al. Journal of Building Materials, 2022, 25(2), 124 (in Chinese).
孙浩然, 邹春霞, 薛慧君, 等. 建筑材料学报, 2022, 25(2), 124.
10 Liu Y, Liu J M, Liu D P, et al. The Technology and Management of Transportation System, 2024, 5(7), 177 (in Chinese).
刘洋, 刘建美, 刘大鹏, 等. 交通科技与管理, 2024, 5(7), 177.
11 Wardeh G, Mohamed M A S, Ghorbel E. Journal of Building Physics, 2010, 35(1), 54.
12 Shao S Q, Gong A M, Wang F L, et al. Yangtze River, 2024, 55(2), 222 (in Chinese).
邵善庆, 龚爱民, 王福来, 等. 人民长江, 2024, 55(2), 222.
13 Tong H Z. Journal of Southwest China Normal University (Natural Science Edition), 2018, 43(5), 121 (in Chinese).
童慧芝. 西南师范大学学报(自然科学版), 2018, 43(5), 121.
14 Xu P, Wu Y M, Wang Z J, et al. Cold Regions Science and Technology, 2020, 172, 102985.
15 Zhu X C, Zhang Y S, Liu Z Y, et al. Acta Materiae Compositae Sinica, 2024, 41(10), 5478 (in Chinese).
朱翔琛, 张云升, 刘志勇, 等. 复合材料学报, 2024, 41(10), 5478.
16 Yuan J, Liu Y, Tan Z C, et al. Construction and Building Materials, 2016, 108, 129.
17 Wang W L, Jiang Q S. Journal of Irrigation and Drainage, 2006(3), 63 (in Chinese).
王文龙, 姜青山. 灌溉排水学报, 2006(3), 63.
18 Pfeiferper P, Avnir D Journal of Chemical Physics, 1983, 79(7), 3369.
19 Wu Z W, Lian H Z. High performance concrete, China Railway Press, China, 1999 (in Chinese).
吴中伟, 廉慧珍. 高性能混凝土, 中国铁道出版社, 1999.
20 Zhang W, Liu C, Liu H W, et al. Acta Materiae Compositae Sinica, 2023, 40(8), 4733 (in Chinese).
张韦, 刘超, 刘化威, 等. 复合材料学报, 2023, 40(8), 4733.
21 Gan L, Feng X W, Shen Z Z, et al. Journal of Central South University (Science and Technology), 2023, 54 (12), 4860 (in Chinese).
甘磊, 冯先伟, 沈振中, 等. 中南大学学报(自然科学版), 2023, 54(12), 4860.
22 Wu H, Xue W P, Wang Z J. Bulletin of the Chinese Ceramic Society, 2024, 43 (5), 1859 (in Chinese).
吴浩, 薛维培, 王中建. 硅酸盐通报, 2024, 43(5), 1859.
23 Yang J Z, Zhang R L, Xue Y J, et al. Materials Reports, 2025, 39(7), 24020033 (in Chinese).
杨军兆, 张戎令, 薛彦瑾, 等. 材料导报, 2025, 39(7), 24020033.
24 Zhang J X, Jin S S. Micro-pore structure and its function of cement concrete, Science Press, China, 2014 (in Chinese).
张金喜, 金珊珊. 水泥混凝土微观孔隙结构及其作用, 科学出版社, 2014.
25 Xu C D, Li Z, Lian H D, et al. Water Resources and Power, 2023, 41(1), 133 (in Chinese).
徐存东, 李准, 连海东, 等, 水电能源科学, 2023, 41(1), 133.
[1] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[2] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[3] 李良顺, 李化建, 杨志强, 石贺男, 董昊良. 基于粗骨料的混凝土弹性模量控制方法及预测模型[J]. 材料导报, 2025, 39(16): 24070071-15.
[4] 秦术杰, 王欣. 热带海岛大气环境下Q235钢的腐蚀规律及GM(1,1)模型预测[J]. 材料导报, 2025, 39(16): 24070041-9.
[5] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[6] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[7] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[8] 邱国兴, 蔡明冲, 张毅, 苏炳瑞, 杨永坤, 李小明. 基于灰色关联分析和机器学习的高炉铁水硅含量预测[J]. 材料导报, 2024, 38(20): 23080170-6.
[9] 关虓, 龙行, 丁莎, 张鹏鑫. 煤矸石粉混凝土冻融损伤模型与劣化机制[J]. 材料导报, 2024, 38(16): 22080144-9.
[10] 朱子健, 胡鹏博, 冯驰. 多孔材料毛细滞后现象研究综述[J]. 材料导报, 2024, 38(12): 23030281-10.
[11] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[12] 高红梅, 兰永伟, 郭楠. 温度作用后花岗岩微观孔隙结构和渗透率的研究[J]. 材料导报, 2023, 37(13): 21070003-6.
[13] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[14] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[15] 龙朝飞, 张戎令, 段运, 郭海贞, 肖鹏震, 段亚伟. 基于成熟度理论持续负温下不同入模温度工况的混凝土强度预测模型[J]. 材料导报, 2022, 36(6): 20100044-8.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed