Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24080234-6    https://doi.org/10.11896/cldb.24080234
  金属与金属基复合材料 |
钛合金表面硅铜共掺杂类金刚石复合薄膜微观结构与摩擦学性能研究
徐照英*, 苏永要, 张腾飞, 王锦标, 吴杰
重庆文理学院材料科学与工程学院,重庆 402160
Study on Microstructure and Tribological Properties of Silicon-Copper Codoped Diamond-like Composite Films on Titanium Alloy
XU Zhaoying*, SU Yongyao, ZHANG Tengfei, WANG Jinbiao, WU Jie
School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
下载:  全 文 ( PDF ) ( 20400KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以汽车钛合金件在全寿命周期内的耐磨损性能、高强度和抗疲劳的迫切需求为导向,采用微波电子回旋共振(ECR)增强磁控溅射沉积技术,基于表面工程与复合多元结构设计理念,通过调控乙炔流量在汽车钛合金表面制备了不同结构的Si非金属与Cu金属共掺杂类金刚石(Si/Cu-DLC)复合薄膜。通过XRD、拉曼光谱仪、台阶仪、纳米压痕仪、摩擦实验机等分析Si/Cu-DLC复合薄膜的组织结构、残余应力、纳米硬度、膜基结合力和摩擦磨损性能。研究结果显示,Si、Cu成功掺杂到DLC薄膜中,Si/Cu-DLC复合薄膜中的残余应力随着乙炔流量的增大逐渐降低,Si/Cu-DLC复合薄膜中sp3键的比例随乙炔流量的增大先增加后减小。乙炔流量为30 sccm(1 sccm=1 mL/min)的Si/Cu-DLC复合薄膜的硬度和弹性模量较高,H/E和塑性指数(H3/E2 )最大,具有较高的韧性和抗裂纹变形能力,因而具有最优异的膜基结合强度和耐磨损性能,可有效延长汽车钛合金的使用寿命。试验结果可为汽车钛合金件耐磨损涂层的设计选材提供借鉴和理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐照英
苏永要
张腾飞
王锦标
吴杰
关键词:  硅铜共掺杂类金刚石复合薄膜  组织结构  残余应力  力学性能  磨损性能    
Abstract: Guided by the urgent need of wear resistance, high strength and fatigue resistance of automotive titanium alloy parts in the whole life cycle, based on surface engineering and composite multi-component structure design, the Si/Cu-DLC composite films with different acetylene gas flow rate were deposited on automotive titanium alloy by microwave ECR enhanced magnetron sputtering technology. The structure, residual stress, hardness, adhesive force and wear properties of these films were studied by X-ray diffraction, Raman spectrometer, profilometry technique, nano-indenter and wear test. The results show that the Si and Cu are successfully doped into DLC films, the residual stress of the Si/Cu-DLC composite films decreases with the increase of acetylene gas flow rate. The sp3 hybrid bond content first increases and then decreases with the increases of acetylene flow rate. The Si/Cu-DLC composite films with acetylene gas flow rate of 30 sccm has a high sp3 hybrid bond content and hardness, the best adhesion strength and wear resistance, excellent toughness and crack deformation resistance due to the high H/E and H3/E2 ratios, effectively improving the service life of urgent titanium alloy. The findings can provide the reference and theoretical basis for the material design and selection of wear resistant coatings for automotive titanium alloy.
Key words:  Si/Cu-DLC composite films    structure    residual stress    mechanical property    wear resistance
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  TG430.15  
基金资助: 重庆市自然科学基金面上项目(CSTB2025NSCQ-GPX0342);重庆市永川区技术创新与应用发展专项面上项目(2024 yc-cxfz30117)
通讯作者:  *徐照英,博士,重庆文理学院材料科学与工程学院副教授、硕士研究生导师。目前主要从事材料表面改性、功能涂层、薄膜物理方面的研究工作。20170035@cqwu.edu.cn   
引用本文:    
徐照英, 苏永要, 张腾飞, 王锦标, 吴杰. 钛合金表面硅铜共掺杂类金刚石复合薄膜微观结构与摩擦学性能研究[J]. 材料导报, 2025, 39(19): 24080234-6.
XU Zhaoying, SU Yongyao, ZHANG Tengfei, WANG Jinbiao, WU Jie. Study on Microstructure and Tribological Properties of Silicon-Copper Codoped Diamond-like Composite Films on Titanium Alloy. Materials Reports, 2025, 39(19): 24080234-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080234  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24080234
1 Fang Xiaofen. Chinese Automobile Industry, 2012(8), 10 (in Chinese).
方晓汾. 中国汽车界, 2012(8), 10.
2 Wu Zhaohui. Internal Combustion Engine and Ingredients, 2022(23), 106 (in Chinese).
吴兆辉. 内燃机与配件, 2022(23), 106.
3 Ottria L, Lauritano D, Bassi M A. Journal of Biological Regulators and Homeostatic Agents, 2018, 32, 81.
4 Wang Hui, Zhao Kongxun, Chu Xingrong, et al. Results in Physics, 2019, 13, 102.
5 Sophia Raaymann, Stefan Spinler. Transportation Research Part E, Logistics and Transportation Review, 2024, 192, 103792
6 Ferrari A C, Robertson J. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2004, 362(1824), 2477.
7 Erdemir A. Tribology International, 2004, 37(11), 1005.
8 Jacek Grabarczyk, Justyna Gaj, Bartosz Pazik, et al. Tribology International, 2021, 153, 106560
9 Shao Wei, Zhou Yefei, Shi Zhijun, Rao Lixiang, et al. Materials Today Communications, 2020, 23, 100946.
10 Yusei Yamada, Motoyuki Murashima, Noritsugu Umehara, et al. Tribology International, 2022, 169, 107486.
11 Wei Xubing, Cao Xueqian, Yin Pingmei, et al. Diamond and Related Materials, 2022, 123, 108852.
12 Dorota Bociaga, Anna Sobczyk-Guzenda, Witold Szymanski, et al. Chemical Analysis and Biological Evaluation. Vacuum, 2017, 143, 395.
13 Li Haitao, Sun Pengfei, Qi Antai, et al. Journal of Aeronautical Materials, 2023, 49, 32193.
14 Li Pei, Zhang Xinru, Chen Shi, et al. Diamond and Related Materials, 2023, 140, 110478
15 Yeong Ju Jo, Teng Fei Zhang, Myoung Jun Son, et al. Applied Surface Science, 2018, 433, 1184.
16 Myoung Jun Son, Teng Fei Zhang, Yeong Ju Jo, et al. Surface & Coatings Technology, 2017, 329, 77.
17 Xiaowei Xu, Peng Guo, Leslie Ching Ow Tiong, et al. Journal of Physics D, Applied Physics, 2017, 50, 175601.
18 Fan Youyu, Li Guang, Xia Yuan. Key Engineering Materials, 2013, 531-532, 523.
19 He Dongqing, Shang Lunlin, Lu Zhibin, et al. Surface & Coatings Technology, 2017, 329, 11.
20 Constantinou M, Pervolaraki M, Koutsokeras L, et al. Surface & Coatings Technology, 2017, 330, 185.
21 Escudeiro A, Figueiredo N M, Polcar T, et al. Applied Surface Science, 2015, 325, 64.
22 Wang Junjun, Ma Jianjun, Huang Weijiu, et al. Surface & Coatings Technology, 2017, 316, 22.
23 Ahmed S F, Alam M S, Mukherjee N. Physica E, Low-dimensional Systems and Nanostructures, 2018, 97, 120.
24 Liu Yi, Guo Peng, He Xiaoyan, et al. Diamond & Related Materials, 2016, 69, 144.
25 Guo Peng, Li Xiaowei, Sun Lili, et al. Thin Solid Films, 2017, 640, 45.
26 Lukasz Kolodziejczyk, Witold Szymanski, Damian Batory, et al. Diamond & Related Materials, 2016, 67, 8.
27 Zhang Sam, Ali Nasar. London, Imperial College Press, 2007, 111, 166.
28 Mohammadinia E, Elahi S M, Shahidi S. Materials Science in Semiconductor Processing, 2018, 74, 7
29 Rajkumar Dey, Sukdev Dolai, Shamima Hussain, et al. Diamond & Related Materials, 2018, 82, 70.
30 Kwang-Leong Choy, Emmanuelle Felix. Matenais science and Engineering A, 2000, 278, 162.
31 Mandal P, Ehiasarian A P, Hovsepian P E. Applied Surface Science, 2016, 366, 260.
32 Nakao S, Choi J, Kim J, Miyagawa S. Diamond & Related Materials, 2006, 15(4), 884.
33 Andrea Carlo Ferrari. Diamond and Related Materials, 2002, 11(3-6), 1053.
34 Robertson J. Diamond and Related Materials, 2004, 13(4-8), 1558.
35 Lan H, Kato T. Journal Nanoscience and Nanotechnology, 2013, 13(2), 1063.
36 Dwivedi N, Kumar S, Malik H K, et al. Journal of Physics and Chemistry of Solids, 2012, 73(2), 308.
37 Ahmed S F, Alam M S, Mukherjee N. Physica E, Low-dimensional Systems and Nanostructures, 2018, 97, 120.
38 Nakao S, Choi J, Kim J, et al. Diamond and Related Materials, 2006, 15(4), 884.
39 Lusk D, Gore M, Boardman W, et al. Diamond and Related Materials, 2008, 17(7), 1613.
40 Hikaru O, Shinya S. Tribology International, 2017, 113, 399.
41 Musil J, Kunc F, Zeman H, et al. Surface and Coatings Technology, 2002, 154(2-3), 304.
42 Leyland A, Matthews A. Wear, 2000, 246(1), 5.
43 Marciano F R, Bonetti L F, Pessoa R S, et al. Diamond & Related Materials, 2008, 17(7-10), 1674.
44 Mohammad S K, Zhi F Z, Zong H X, et al. Journal of Materials Science & Technology, 2021, 65, 108.
45 Bertran E, Corbella C, Pinyol A, et al. Diamond and Related Materials, 2003, 12(3-7), 1008.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed