Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 145-149    https://doi.org/10.11896/j.issn.1005-023X.2017.023.021
  专题栏目:超高性能混凝土及其工程应用 |
超高韧性水泥基复合材料多缝开裂特性及其自生愈合*
刘红彪1, 张强1, 郭畅1, 张鹏2
1 交通运输部天津水运工程科学研究所,港口水工建筑技术国家工程实验室,天津300456;
2 青岛理工大学土木工程学院,青岛266033
Multiple Cracking Characteristic of Strain Hardening Cement-based Composites and the Cracks' Autogenous Self-healing
LIU Hongbiao1, ZHANG Qiang1, GUO Chang1, ZHANG Peng2
1 Tianjin Research Institute for Water Transport Engineering, National Engineering Laboratory for Port Hydraulic Construction Technology, Tianjin 300456;
2 School of Civil Engineering,Qingdao University of Technology, Qingdao 266033
下载:  全 文 ( PDF ) ( 1574KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 应变硬化水泥基复合材料(Strain hardening cement-based composites, SHCC)是超高性能水泥基材料的一种。通过三点弯曲加载试验,分别对普通砂浆和SHCC试件诱导开裂,对两种材料的开裂特性及其裂缝分布规律进行了研究。结果表明,SHCC材料试件与普通水泥砂浆试件相比具有更高的承载力和应变能力,初始开裂荷载约为普通砂浆试件的2.5倍。SHCC材料中的PVA纤维的桥接作用有效延迟了裂缝的产生与扩展,将普通砂浆试件中数量少而大的裂缝转化为多而细的微小裂缝,呈现多缝开裂特性,产生的裂缝宽度符合正态分布规律,且90%的微小裂缝小于30 μm。这些微小裂缝在潮湿环境中产生一定程度的自生愈合,在水中的愈合程度和速度均高于在潮湿空气中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘红彪
张强
郭畅
张鹏
关键词:  应变硬化水泥基复合材料(SHCC)  多缝开裂  裂缝宽度  裂缝分布  自愈合    
Abstract: SHCC (Strain hardening cement-based composites) is a type of ultra-high performance concrete (UHPC). Cracks were introduced into ordinary cement mortar and SHCC specimens by means of three-point bending test, and the cracking characteristic and crack distribution were investigated. The results indicated that SHCC displayed higher bearing capacity and strain capacity than ordinary cement mortar, as the former's initial cracking load was about 1.5 times higher than the latter. The bridging effect of PVA fibers effectively delays crack initiation and propagation in SHCC, and causes the transform of lesser, wider cracks in ordinary mortar into much more and finer cracks in SHCC, which implies a multiple cracking characteristic. The crack width measured in SHCC specimens coincided well with normal distribution, and moreover, 90% of the cracks had <30 μm width. These micro-cracks were capable of autogenous self-healing under humid condition, as higher self-healing degree and self-healing rate were observed in water than those in humid air.
Key words:  strain hardening cement-based composite (SHCC)    multiple cracking    crack width    crack distribution    autogenous self-healing
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *天津市自然科学基金(16JCYBJC21900); 中央科研院所基本科研业务费(TKS150208); 国家自然科学基金(51778309)
通讯作者:  郭畅:男,1985年生,硕士,主要从事港工结构加固研究 E-mail:ngu_eric@163.com   
作者简介:  刘红彪:男,1981年生,博士,副研究员,主要从事结构加固、新材料开发 E-mail:liuhbtks@163.com
引用本文:    
刘红彪, 张强, 郭畅, 张鹏. 超高韧性水泥基复合材料多缝开裂特性及其自生愈合*[J]. CLDB, 2017, 31(23): 145-149.
LIU Hongbiao, ZHANG Qiang, GUO Chang, ZHANG Peng. Multiple Cracking Characteristic of Strain Hardening Cement-based Composites and the Cracks' Autogenous Self-healing. Materials Reports, 2017, 31(23): 145-149.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.021  或          https://www.mater-rep.com/CN/Y2017/V31/I23/145
1 Liu Ying.Corrosion behavior of reinforced bar in concrete and chloride ion transport [D]. Qingdao: Qingdao University of Technology, 2015 (in Chinese).
刘影. 复合离子作用下混凝土中钢筋锈蚀行为与氯离子传输研究[D]. 青岛:青岛理工大学,2015.
2 Zhang Weiping, Gu Xianglin, Jin Xianyu, et al. Study on corrosion mechanism of steel bars in concrete and mechanical performance of corroded steel bars [J]. J Build Struct, 2010(S1):327 (in Chinese).
张伟平, 顾祥林, 金贤玉, 等. 混凝土中钢筋锈蚀机理及锈蚀钢筋力学性能研究[J]. 建筑结构学报, 2010(S1):327.
3 牛获涛.混凝土结构耐久性与寿命预测[M].北京:科学出版社,2002.
4 Zhang P, Wittmann F H, Zhao T J, et al. Observation and quantification of water penetration into strain hardening cement-based composites (SHCC) with multiple cracks by means of neutron radiography [J]. Nucl Instruments Methods Phys Res Section A: Acce-lerators, Spectrometers, Detectors and Associated Equipment, 2010, 620(2):414.
5 Wu Zhongwei. Future of fiber reinforced cement based materials [J]. China Concr Cem Products, 1999(1):5 (in Chinese).
吴中伟. 纤维增强—水泥基材料的未来[J]. 混凝土与水泥制品, 1999(1):5.
6 Li V C, Leung C K Y. Steady-state and multiple cracking of short random fiber composites [J]. J Eng Mech, 1992, 118(11):2246.
7 Paul S C, van Zijl G P A G, Babafemi A J, et al. Chloride ingress in cracked and uncracked SHCC under cyclic wetting-drying exposure[J]. Constr Build Mater, 2016, 114:232.
8 Mechtcherine V. Towards a durability framework for structural elements and structures made of or strengthened with high-performance fibre-reinforced composites[J]. Constr Build Mater, 2012, 31:94.
9 Kobayashi K, Ahn D L, Rokugo K. Effects of crack properties and water-cement ratio on the chloride proofing performance of cracked SHCC suffering from chloride attack[J]. Cem Concr Compos, 2016, 69:18.
10 Xu Shilang, Li Hedong. A review on the development of research and application of ultra high toughness cementitious composites [J]. China Civil Eng J, 2008, 41(6):45(in Chinese).
徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45.
11 Xu Shilang, Li Qinghua. Theoretical analysis on bending behavior of functionally graded composite beam crack-controlled by ultrahigh toughness cementitious composites [J]. Sci China Series E: Tech-nol Sci, 2009, 52(2):363.
12 Sahmaran M, Li M, Li V C. Transport properties of engineered cementitious composites under chloride exposure [J]. ACI Mater J, 2007, 104(6):604.
13 Wang K, Jansen D C, Shah S P, et al. Permeability study of cracked concrete[J]. Cem Concr Res, 1997, 27(3):381.
14 Schroefl C, Mechtcherine V, Kaestner A, et al. Transport of water through strain-hardening cement-based composite applied on top of cracked reinforced concrete slabs with and without hydrophobization of cracks-investigation by neutron radiography [J]. Constr Build Mater, 2015, 76:70.
[1] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[2] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[3] 董素芬, 宋泽轩, 张文辉, 黄智德, 韩宝国. 热诱导自愈合沥青混凝土研究综述:一种可持续路面材料[J]. 材料导报, 2024, 38(22): 23080062-12.
[4] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[5] 顾春平, 姚程阳, 陈士龙, 王倩楠. 溶液浓度与组成成分对氯离子在裂缝中传输速率的影响[J]. 材料导报, 2024, 38(19): 22100103-7.
[6] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[7] 龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
[8] 徐宁,汪海年, 陈玉, 丁鹤洋, 冯珀楠, 赵云飞. 基于分子动力学的废食用油改性沥青自愈合特性研究[J]. 材料导报, 2023, 37(15): 21110097-8.
[9] 许梦媛, 刘让同, 李亮, 刘淑萍, 李淑静. 氯化铝交联双网络聚乙烯醇/角蛋白自愈合水凝胶[J]. 材料导报, 2023, 37(15): 22010257-6.
[10] 严亮, 王沛, 黄国辉, 李慧敏, 蒋坤. 基于动态非共价键作用的HP(AA-co-AM)自愈合凝胶的构建及传感性能研究[J]. 材料导报, 2023, 37(14): 22010002-6.
[11] 黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展[J]. 材料导报, 2022, 36(8): 20070335-7.
[12] 刘娟红, 孟翔, 段品佳, 马焜. 基于MATLAB的混凝土裂缝宽度计算方法研究[J]. 材料导报, 2022, 36(6): 21010082-6.
[13] 邓明科, 王雪松, 张敏, 马福栋, 罗妍, 孙宏哲. 钢筋高延性混凝土梁裂缝试验研究与计算方法[J]. 材料导报, 2022, 36(2): 20120239-9.
[14] 李崇智, 牛振山, 吴慧华, 曹莹莹. 新型水泥基渗透结晶型防水剂的制备及性能[J]. 材料导报, 2021, 35(Z1): 216-219.
[15] 梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083-9096.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed