Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (23): 150-155    https://doi.org/10.11896/j.issn.1005-023X.2017.023.022
  第一届先进胶凝材料研究与应用学术会议 |
氧化石墨烯增强水泥基复合材料的研究现状及展望*
徐亦冬1, 曾鞠庆1, 2, 陈伟1, 毛江鸿1, 沈建生1, 胡丹烨1
1 浙江大学宁波理工学院土木建筑工程学院,宁波315100;
2 江苏科技大学土木工程与建筑学院,镇江212003
A State-of-the-art Review on Graphene Oxide Reinforced Cement Based Composites
XU Yidong1, ZENG Juqing1, 2, CHEN Wei1, MAO Jianghong1, SHEN Jiansheng1, HU Danye1
1 School of CML Engineering &Architecture, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100;
2 School of Architecture and Civil Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003
下载:  全 文 ( PDF ) ( 2389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水泥水化进程复杂,所形成的水化产物缺陷较多,因而导致水泥基复合材料的力学性能及耐久性较差,如何对水泥水化行为进行调控成为了研究的热点。氧化石墨烯(GO)是由石墨氧化制备石墨烯的中间产物,因其存在大量的活性基团,在水泥基复合材料领域具有广阔的应用前景。概述了氧化石墨烯的选择及制备,论述了氧化石墨烯增强水泥基复合材料的流变性、微结构、物理力学性能及耐久性,重点阐述了氧化石墨烯对水泥基复合材料水化及性能调控的作用机理,针对当前研究中存在的问题进行了总结,并对未来的研究工作进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐亦冬
曾鞠庆
陈伟
毛江鸿
沈建生
胡丹烨
关键词:  氧化石墨烯  水泥基复合材料  性能调控    
Abstract: The hydration process of cement is complex, and the formed hydration products have many defects, which lead to the poor mechanical properties and durability of cement based composites. How to control the hydration behavior of cement has become the focus of research. Graphene oxide (GO) is an intermediate product for the graphene preparation by graphite oxidation, which has a large number of active groups and possesses wide application prospect in the field of cement based composites. This paper presents a state-of-the-art report of rheological properties, microstructure, mechanical properties and durability of cement based composites reinforced by graphene oxide. The regulation mechanism of graphene oxide on the hydration and performance of cement-based composites is emphasized. The existing problems in current researches are summarized, and the future research work is proposed.
Key words:  graphene oxide    cement based composites    performance regulation
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU525  
基金资助: *国家科技支撑计划课题(2015BAL02B03); 国家自然科学基金(51778577); 浙江省自然科学基金(LY15E080025)
作者简介:  徐亦冬:男,1980年生,博士,副教授,硕士研究生导师,主要从事先进土木工程材料的研究 E-mail:xyd@nit.zju.edu.cn
引用本文:    
徐亦冬, 曾鞠庆, 陈伟, 毛江鸿, 沈建生, 胡丹烨. 氧化石墨烯增强水泥基复合材料的研究现状及展望*[J]. 《材料导报》期刊社, 2017, 31(23): 150-155.
XU Yidong, ZENG Juqing, CHEN Wei, MAO Jianghong, SHEN Jiansheng, HU Danye. A State-of-the-art Review on Graphene Oxide Reinforced Cement Based Composites. Materials Reports, 2017, 31(23): 150-155.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.022  或          https://www.mater-rep.com/CN/Y2017/V31/I23/150
1 孙伟,缪昌文. 现代混凝土理论与技术[M]. 北京: 科学出版社, 2012.
2 Lv S H, Deng L J, Yang W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites[J]. Cem Concr Compos, 2016, 66:1.
3 Saafi M, Tang L, Fung J, et al. Enhanced properties of graphene/fly ash geopolymeric composite cement[J]. Cem Concr Res, 2015, 67:292.
4 Ranjbar N, Mehrali M, Mehrali M, et al. Graphene nanoplatelet-fly ash based geopolymer composites[J]. Cem Concr Res, 2015, 76:222.
5 Du H, Pang S D. Enhancement of barrier properties of cement mortar with graphene nanoplatelet[J]. Cem Concr Res, 2015, 76:10.
6 Pan Z, He L, Qiu L, et al. Mechanical properties and microstructure of a graphene oxide-cement composite[J]. Cem Concr Compos, 2015, 58:140.
7 Lv S, Zhang J, Zhu L, et al. Preparation of cement composites with ordered microstructures via doping with graphene oxide nanosheets and an investigation of their strength and durability[J]. Materials, 2016, 9(11):924.
8 Lv S, Zhang J, Zhu L, et al. Preparation of regular cement hydration crystals and ordered microstructures by doping GON and an investigation into its compressive and flexural strengths[J]. Crystals, 2017, 7(6):165.
9 Lv S H, Cui Y Y, Sun T, et al. Effects of graphene oxide on fluidity of cement paste and structure and properties of hardened cement paste[J]. J Funct Mater, 2015, 46(4):4051(in Chinese).
吕生华,崔亚亚,孙婷,等. 氧化石墨烯对水泥净浆流动度及水泥石结构和性能的影响[J]. 功能材料, 2015, 46(4):4051.
10 Lv S H, Ding H D, Sun T, et al. Effect of naphthalene superplasticizer/graphene oxide composite on microstructure and mechanical properties of hardened cement paste[J]. J Shaanxi University of Science and Technology (Natural Science Edition), 2014, 32(5):42(in Chinese).
吕生华,丁怀东,孙婷,等. 萘系减水剂/氧化石墨烯复合材料对水泥石微观结构和性能的影响[J]. 陕西科技大学学报(自然科学版), 2014, 32(5):42.
11 Lv S H, Zhang J, Zhu L L, et al. Regulation of graphene oxide on microstructure of cement composites and its impact on compressive and flexural strength[J]. CIESC J, 2017, 68(6):2585(in Chinese).
吕生华,张佳,朱琳琳,等. 氧化石墨烯对水泥基复合材料微观结构的调控作用及对抗压抗折强度的影响[J]. 化工学报, 2017, 68(6):2585.
12 Lv S, Qiu C, Ma Y, et al. Regulation of GO on cement hydration crystals and its toughening effect[J]. Mag Concr Res, 2013, 65(20):1246.
13 Horszczaruk E, Mijowska E, Kalenczuk R J, et al. Nanocomposite of cement/graphene oxide-Impact on hydration kinetics and Young’s modulus[J]. Constr Build Mater, 2015, 78:234.
14 Lv SH, Sun T, Liu JJ, et al. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites[J]. Acta Mater Compos Sin, 2014, 31(3):644(in Chinese).
吕生华,孙婷,刘晶晶,等. 氧化石墨烯纳米片层对水泥基复合材料的增韧效果及作用机制[J]. 复合材料学报, 2014, 31(3):644.
15 Mohammed A, Sanjayan J G, Duan W H, et al. Incorporating graphene oxide in cement composites:A study of transport properties[J]. Constr Build Mater, 2015, 84:341.
16 Gao D G, Ma Y J. Preparation and properties of copolymer of graphene oxide and monomers of polycarboxylate superplasticizer[J]. Fine Chem, 2015, 32(1):103(in Chinese).
高党国,马宇娟. 氧化石墨烯与聚羧酸减水剂单体共聚物的制备与性能[J]. 精细化工, 2015, 32(1):103.
17 Shang Y, Zhang D, Yang C, et al. Effect of graphene oxide on the rheological properties of cement pastes[J]. Constr Build Mater, 2015, 96:20.
18 Li X, Wei W, Qin H, et al. Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement[J]. J Phys Chem Solids, 2015, 85:39.
19 Chen J, Zhao D, Ge H, et al. Graphene oxide-deposited carbon fiber/cement composites for electromagnetic interference shielding application[J]. Constr Building Mater, 2015, 84:66.
20 Wang M, Yao H, Wang R, et al. Chemically functionalized graphene oxide as the additive for cement-matrix composite with enhanced fluidity and toughness[J]. Constr Build Mater, 2017, 150:150.
21 Lv S H, Ma Y J, Qiu C C, et al. Study on reinforcing and toughening of graphene oxide to cement-based composites[J]. J Funct Mater, 2013, 44(15):2227(in Chinese).
吕生华,马宇娟,邱超超,等. 氧化石墨烯增强增韧水泥基复合材料的研究[J]. 功能材料, 2013, 44(15):2227.
22 Wang Q, Wang J, Lu C, et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement[J]. New Carbon Mater, 2015, 30(4):349.
23 Mokhtar M M, Abo-El-Enein S A, Hassaan M Y, et al. Mechanical performance, pore structure and micro-structural characteristics of graphene oxide nano platelets reinforced cement[J]. Constr Build Mater, 2017, 138:333.
24 Lv S, Liu J, Sun T, et al. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process[J]. Constr Build Mater, 2014, 64:231.
25 Cui H, Yan X, Tang L, et al. Possible pitfall in sample preparation for SEM analysis—A discussion of the paper “Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites” by Lv et al[J]. Cem Concr Composi 2017, 77:81.
26 Tong T, Fan Z, Liu Q, et al. Investigation of the effects of graphene on the micro-and macro-properties of cementitious materials[J]. Constr Build Mater, 2016, 106:102.
27 Gong K, Pan Z, Korayem A H, et al. Reinforcing effects of graphene oxide on portland cement paste[J]. J Mater Civil Eng,2015,27(2):A4014010.
28 Yang Y L, Yuan X Y, Shen X, et al. Research on the corrosion resistance of graphene oxide on cement mortar[J]. J Funct Mater, 2017, 48(5):5144(in Chinese).
杨雅玲,袁小亚,沈旭,等. 氧化石墨烯改性水泥砂浆耐腐蚀性能的研究[J]. 功能材料, 2017, 48(5):5144.
29 Lu Z, Li X, Hanif A, et al. Early-age interaction mechanism between the graphene oxide and cement hydrates[J]. Constr Build Mater, 2017, 152:232.
[1] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[2] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[3] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[4] 康迎杰, 郭自利, 叶斌斌, 潘鹏. ECC全包裹普通混凝土复合试件的力学性能[J]. 材料导报, 2024, 38(3): 22050021-6.
[5] 王照耀, 梁兴文, 翟天文, 王莹, 吴奎. 钢-PVA混杂纤维增强水泥基复合材料永久模板叠合RC单向板短期刚度计算方法[J]. 材料导报, 2024, 38(3): 22060083-9.
[6] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[7] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[8] 张立卿, 余家乐, 王云洋, 韩宝国, 陈梦成, 许开成. 渗透结晶水泥基复合材料研究综述[J]. 材料导报, 2024, 38(13): 22100014-16.
[9] 朱玉方, 张慧丽, 梁丰国, 杨新伟, 陈长科, 买买提江·依米提, 马俊红. 还原氧化石墨烯的可控制备及表征[J]. 材料导报, 2024, 38(12): 22110271-6.
[10] 任鑫, 王浩鑫, 孙涛, 王港, 孟超, 邱星武. 单脉冲电沉积Ni-纳米TiC-氧化石墨烯复合镀层结构及磨损性能[J]. 材料导报, 2024, 38(11): 22060057-7.
[11] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[12] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[13] 王姗迟, 潘嵩玥, 孙俊玲, 赵燕. 热阻型氧化石墨烯基火灾早期预警传感器的研究进展[J]. 材料导报, 2023, 37(24): 22010297-9.
[14] 马衍轩, 宋晓辉, 于霞, 吴睿, 付双阳, 葛亚杰, 朱鹏飞, 张建, 吴磊. 海工钢筋环氧涂层的多尺度结构设计与防护性能调控研究进展[J]. 材料导报, 2023, 37(24): 22050047-13.
[15] 王晓楠, 冯德成. 纳米碳/水泥基复合材料研究进展[J]. 材料导报, 2023, 37(21): 22030088-16.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed