Please wait a minute...
CLDB  2017, Vol. 31 Issue (23): 138-144    https://doi.org/10.11896/j.issn.1005-023X.2017.023.020
  专题栏目:超高性能混凝土及其工程应用 |
超高性能混凝土与普通混凝土的黏结抗冻性能*
余自若1, 沈捷1, 贾方方2, 3, 安明喆1
1 北京交通大学土木建筑工程学院,北京100044;
2 北京市建筑工程研究院有限责任公司,北京市功能性高分子建筑材料工程技术研究中心,北京 100039;
3 北京交通职业技术学院路桥系,北京 102200
Bonding Performances of Ultra High Performance Concrete to Normal Concrete Under Freeze-Thaw Cycle
YU Ziruo1, SHEN Jie1, JIA Fangfang2, 3, AN Mingzhe1
1 School of Civil Engineering, Beijing Jiaotong University, Beijing 100044;
2 Beijing Engineering Research Center of Architectural Functional Macromolecular Materials, Beijing Building Construction Research Institute, Co., Ltd., Beijing 100039;
3 Road and Bridge Department, Beijing Jiaotong Vocational Technical College, Beijing 102200
下载:  全 文 ( PDF ) ( 1261KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对147个超高性能混凝土与普通混凝土的 100 mm×100 mm×100 mm立方体黏结试件进行了冻融循环后的黏结性能研究,测量了冻融后试件的相对动弹性模量、质量损失率以及劈裂抗拉强度,研究了超高性能混凝土中的钢纤维掺量、普通混凝土的强度等级、黏结面形式、试件的浇筑方向等因素对黏结试件抗冻性能的影响。结果表明,冻融循环结束后,所有黏结试件中的超高性能混凝土部分都没有出现损伤,超高性能混凝土可以作为普通混凝土结构的理想外围护材料;随着冻融循环次数的增加,黏结试件的相对动弹性模量逐渐减小,质量损失率先降低后增加,黏结试件的劈裂抗拉强度线性下降;影响黏结试件冻融后劈裂抗拉强度下降速度的关键因素是超高性能混凝土中的钢纤维掺量和黏结面的形式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余自若
沈捷
贾方方
安明喆
关键词:  超高性能混凝土  普通混凝土  黏结性能  冻融循环    
Abstract: 147 ultra high performance concrete-normal concrete bonded cubes with dimension of 100 mm × 100 mm × 100 mm were tested to investigate the bonding performance under freeze-thaw cycle test. The relative dynamic elastic modulus, mass loss rate and splitting tensile strength of specimens were measured after freeze-thaw cycle. The effects of steel fibers in ultra high performance concrete, the strength of normal concrete, the form of bonding surface and the casting direction of concrete on the freeze-thaw resistance of bonded specimens were studied. The results show that the ultra high performance concretes in all bonded specimens remain undamaged after the freeze-thaw cycle, and the ultra high performance concrete can be applied as an ideal external enclosure material for normal concrete structures. With the increase of the freeze-thaw cycles, the relative dynamic elastic modulus of specimens are decreased gradually, the mass loss rates are decreased first and then increased, and the splitting tensile strengths are decreased linearly. The key factors that affect the rate of strength decline of the bonded specimens under freeze-thaw cycle are the contents of steel fiber in ultra high performance concrete and the form of bonding surface.
Key words:  ultra high performance concrete    normal concrete    bonding performance    freeze-thaw cycle
出版日期:  2017-12-10      发布日期:  2018-05-08
ZTFLH:  TU528  
基金资助: *国家自然科学基金(51108019; 51578049); 河北省大型结构健康诊断与控制实验室开放课题基金(201506)
作者简介:  余自若:女, 1980年生,博士,副教授,主要从事超高性能混凝土的力学行为及工程应用研究 E-mail:zryu@bjtu.edu.cn
引用本文:    
余自若, 沈捷, 贾方方, 安明喆. 超高性能混凝土与普通混凝土的黏结抗冻性能*[J]. CLDB, 2017, 31(23): 138-144.
YU Ziruo, SHEN Jie, JIA Fangfang, AN Mingzhe. Bonding Performances of Ultra High Performance Concrete to Normal Concrete Under Freeze-Thaw Cycle. Materials Reports, 2017, 31(23): 138-144.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.023.020  或          https://www.mater-rep.com/CN/Y2017/V31/I23/138
1 Metha P K, Monteiro P J M. Concrete: Microstructure, properties and materials (third edition)[M]. New York: McGraw-Hill Professional, 2005:659.
2 Richard P, Cheyrezy M. Composition of reactive powder concrete[J]. Cem Concr Res, 1995, 25(7):1501.
3 Wang Y, An M Z, Yu Z R, et al. Research on the durability of rea-ctive powder concrete[J]. Concrete, 2013(8):12(in Chinese).
王月, 安明喆, 余自若,等. 活性粉末混凝土耐久性研究现状综述[J]. 混凝土, 2013(8):12.
4 Ji W Y, Guo M L, Li W W. Interface mechanical behavior of RPC-NC composite beam[J]. China Railway Sci, 2016, 37(1):46 (in Chinese).季文玉, 过民龙, 李旺旺. RPC-NC组合梁界面受力性能研究[J]. 中国铁道科学, 2016, 37(1):46.
5 Zhong Y M. Study on RPC as permanent formwork of concrete engineering[D]. Beijing: Beijing Jiaotong University, 2005(in Chinese).
钟咏梅.活性粉末混凝土做永久性模板研究[D].北京:北京交通大学,2005.
6 Tayeh B A, Bakar B H A, Johari M A M, et al. Mechanical and permeability properties of the interface between normal concrete substrate and ultra high performance fiber concrete overlay[J]. Constr Build Mater, 2012, 36:538.
7 Qu W J, Gu J J, Qin Y H. Experimental study on the durability of RPC-NC combined section beams[J]. Struct Eng, 2009, 25(1):106(in Chinese).
屈文俊, 顾俊颉, 秦宇航. RPC-NC组合截面梁的耐久性试验研究[J]. 结构工程师, 2009, 25(1):106.
8 Jia F F, He K, Wang W J, et al. Splitting tensile bonding strength of reactive powder concrete to normal concrete[J]. J China Railway Soc, 2016, 38(3):127(in Chinese).
贾方方, 贺奎, 王万金,等. 活性粉末混凝土与NC黏结劈拉性能[J]. 铁道学报, 2016, 38(3):127.
9 Lee M G, Wang Y C, Chiu C T. A preliminary study of reactive powder concrete as a new repair material[J]. Constr Building Mater, 2007, 21(1):182.
10 Green M F, Bisby L A, Beaudoin Y, et al. Effect of freeze-thaw cycles on the bond durability between fibre reinforced polymer plate reinforcement and concrete[J]. Canadian J Civil Eng, 2000, 27(5): 949.
11 Plum D R. The behavior of polymer materials in concrete repair and factors influencing selection[J]. Struct Eng, 1990, 68(17):337.
12 Wang Y. Durability of reactive powder concrete under coupling action of freeze-thaw cycling and chlorid erosion[D]. Beijing: Beijing Jiaotong University, 2016(in Chinese).
王月. 冻融循环与氯离子侵蚀耦合作用下活性粉末混凝土耐久性研究[D]. 北京: 北京交通大学, 2016.
[1] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[2] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[3] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[4] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[5] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[6] 吕絮, 刘俊伟, 高嵩, 孟鋆, 国振. 钻井废弃泥浆固化土力学特性试验分析[J]. 材料导报, 2024, 38(7): 22080083-6.
[7] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[8] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[9] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[10] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[11] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[12] 戈雪良, 柯敏勇, 刘伟宝, 陆采荣, 王珩, 梅国兴, 杨虎. 混凝土冻融作用下冻结应力演化规律及对抗冻性能的影响[J]. 材料导报, 2024, 38(12): 22070144-5.
[13] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[14] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[15] 吴伟喆, 刘阳, 张艺欣, 黄建山, 闫国威. 冻融环境下FRCC孔隙结构与力学性能研究综述[J]. 材料导报, 2023, 37(S1): 23010108-12.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed