Advances in the Application of Waste Tire Pyrolysis Carbon Black for Energy Storage and Conversion
CHEN Meiling1, SUN Yanzhi1, WU Yufeng2, YUAN Haoran3, PAN Junqing1,*
1 State Key Laboratory of Effective Utilization of Chemical Resources, School of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China 2 Department of Materials and Manufacturing, Beijing Institute of Technology, Beijing 100124, China 3 Guangzhou Energy Institute, Chinese Academy of Sciences, Guangzhou 510610, China
Abstract: With the rapid development of vehicles, plenty of waste tires are produced globally, resulting in serious resource waste and environmental pollution, etc. The pyrolysis process is considered a high-efficiency method for the final treatment of waste tires and has obtained wide application. As a main by-product of the waste tire pyrolysis process, the high-value recycling and utilization of pyrolytic carbon black(CBp) is conducive to the healthy development of the pyrolysis industry and upgrading in full value chains. The CBp contains 75%—81% amorphous carbon, which can be demineralized and modified to obtain porous carbon materials with enhanced electrical conductivity and other properties comparable to commercial carbon black, demonstrating an important role in energy storage and energy conversion applications. This paper combines the purification method of CBp from waste tires and the modification method, mainly focusing on the research progress of CBp in supercapacitors, se-condary batteries and electrocatalysis, etc., and reviews and analyzes the current situation of CBp resourcefulness research and application.
陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
CHEN Meiling, SUN Yanzhi, WU Yufeng, YUAN Haoran, PAN Junqing. Advances in the Application of Waste Tire Pyrolysis Carbon Black for Energy Storage and Conversion. Materials Reports, 2024, 38(8): 23100011-11.
1 Hejna A, Korol J, Przybysz-Romatowska M, et al. Waste Management, 2020, 108, 106. 2 Tang X, Chen Z, Liu J, et al. Journal of Hazardous Materials, 2021, 402, 123516. 3 Islam M M U, Li J, Wu Y F, et al. Resources, Conservation and Recycling, 2022, 184, 106390. 4 Sivaraman S, Michael A N, Venkatachalam P, et al. Chemosphere, 2022, 295, 133797. 5 Lebreton B, Tuma A. International Journal of Production Economics, 2006, 104(2), 639. 6 Saputra R, Walvekar R, Khalid M, et al. Chemosphere, 2021, 265, 129033. 7 Sienkiewicz M, Kucinska-Lipka J, Janik H, et al. Waste Management, 2012, 32(10), 1742. 8 Jiang G, Guo J, Sun Y, et al. Journal of Energy Storage, 2021, 44, 103372. 9 Shahrokhi-Shahraki R, Benally C, El-Din M G, et al. Chemosphere, 2021, 264, 128455. 10 Hou S, Zhang D, Xie Z, et al. Science China Technological Sciences, 2022, 65(10), 2337. 11 Zhi M, Yang F, Meng F, et al. ACS Sustainable Chemistry & Enginee-ring, 2014, 2(7), 1592. 12 Zhao P, Han Y, Dong X, et al. ECS Journal of Solid State Science and Technology, 2015, 4(7), M35. 13 Martínez J D, Cardona-Uribe N, Murillo R, et al. Waste Management, 2019, 85, 574. 14 Mui E L K, Cheung W H, Valix M, et al. Journal of Colloid and Interface Science, 2010, 347(2), 290. 15 López F A, Centeno T A, Rodríguez O, et al. Journal of the Air & Waste Management Association, 2013, 63(5), 534. 16 Banar M, Özkan A, Akyıldız V, et al. Journal of Material Cycles and Waste Management, 2015, 17(1), 125. 17 Tang H, Hu H, Li A, et al. Fuel, 2021, 301, 121019. 18 Zhang X, Li H, Cao Q, et al. Waste Management & Research, 2018, 36(5), 436. 19 Menares T, Herrera J, Romero R, et al. Waste Management, 2020, 102, 21. 20 Abioye A M, Ani F N. Renewable and Sustainable Energy Reviews, 2015, 52, 1282. 21 Wang H, Liu J, Chen Z, et al. Electrochimica Acta, 2017, 230, 236. 22 Wang Y Z, Tang Z H, Shen S L, et al. New Carbon Materials, 2022, 37(2), 321. 23 Chen C C, Huang Y H, Chien H J. Sustainable Chemistry and Pharmacy, 2021, 24, 100535. 24 Han Y, Zhao P P, Dong X T, et al. Frontiers of Materials Science, 2014, 8(4), 391. 25 Bello A, Momodu D Y, Madito M J, et al. Materials Chemistry and Phy-sics, 2018, 209, 262. 26 Boota M, Paranthaman M P, Naskar A K, et al. ChemSusChem, 2015, 8(21), 3576. 27 Jiang G, Chen M, Sun Y, et al. Journal of Energy Storage, 2023, 63, 106955. 28 Snook G A, Kao P, Best A S. Journal of Power Sources, 2011, 196(1), 1. 29 Wang C, Li D, Zhai T, et al. Energy Storage Materials, 2019, 23, 499. 30 Wu B, Liu B, Yuwen C, et al. Waste and Biomass Valorization, 2023, 14(6), 1969. 31 Hou S, Xie Z, Zhang D, et al. Environmental Research, 2023, 238, 117071. 32 Demirocak D E, Srinivasan S S, Stefanakos E K. Applied Sciences, 2017, 7(7), 731. 33 Mayer J K, Bockholt H, Kwade A. Journal of Power Sources, 2022, 529, 231259. 34 Gauthier N, Agrawal A, Dubrunfaut O, et al. Electrochimica Acta, 2023, 437, 141495. 35 Naskar A K, Bi Z, Li Y, et al. RSC Advances, 2014, 4(72), 38213. 36 Gnanaraj J S, Lee R J, Levine A M, et al. Sustainability, 2018, 10(8), 2840. 37 Shilpa R, Kumar R, Sharma A. Journal of Applied Electrochemistry, 2018, 48(1), 1. 38 Veldevi T, Raghu S, Kalaivani R A, et al. Chemosphere, 2022, 288, 132438. 39 Teng Y, Liu H, Liu D, et al. Journal of Colloid and Interface Science, 2019, 554, 220. 40 Wang X, Zhou L, Li J, et al. Materials, 2021, 14(9), 2178. 41 Djuandhi L, Gaikwad V, Cowie B C C, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(20), 6972. 42 Li Y, Paranthaman M P, Akato K, et al. Journal of Power Sources, 2016, 316, 232. 43 Gong H, Wang D, Jiang Y, et al. Materials Letters, 2021, 285, 128983. 44 Wu W, Zhang Y, Ding D, et al. Advanced Materials, 2018, 30(4), 1704745. 45 Kouchachvili L, Hataley B, Geddis P, et al. International Journal of Hydrogen Energy, 2024, 52, 1153. 46 Passaponti M, Lari L, Bonechi M, et al. Energies, 2020, 13(21), 5646. 47 Ayanoğlu A, Yumrutaş R. Energy Conversion and Management, 2016, 111, 261. 48 Wang K, Xu Y, Duan P, et al. Waste Management, 2019, 86, 1. 49 Chen W, Feng H, Shen D, et al. Science of the Total Environment, 2018, 618, 804. 50 Wang Y, Han C, Xie P, et al. Journal of Electroanalytical Chemistry, 2022, 904, 115908. 51 Hood Z D, Yang X, Li Y, et al. Journal of the Electrochemical Society, 2018, 165(14), H881. 52 Liu J, Sun X, Song P, et al. Advanced Materials, 2013, 25(47), 6879. 53 Muhyuddin M, Testa D, Lorenzi R, et al. Electrochimica Acta, 2022, 433, 141254. 54 Lee G, Kang G S, Jang J H, et al. International Journal of Energy Research, 2022, 46(4), 4645. 55 Passaponti M, Rosi L, Savastano M, et al. Journal of Power Sources, 2019, 427, 85. 56 Passaponti M, Lari L, Bonechi M, et al. Energies, 2020, 13(21), 5646. 57 Oh J, Park S, Jang D, et al. Carbon, 2019, 145, 481. 58 Veksha A, Latiff N M, Chen W, et al. Carbon, 2020, 167, 104. 59 Kang G S, Lee G, Cho S Y, et al. Applied Surface Science, 2021, 548, 149027. 60 Wang X, Gan X, Hu T, et al. Advanced Materials, 2017, 29(4), 1603617. 61 Gan X, Lv R, Wang X, et al. Carbon, 2018, 132, 512. 62 Guo Y, Wang Y, Huang Z, et al. Carbon, 2022, 194, 303. 63 Jiang E, Song N, Hong S, et al. International Journal of Hydrogen Energy, 2022, 47(37), 16544. 64 Zhu Y, Zhang T, Lee J Y. ChemElectroChem, 2018, 5, 583. 65 Fan T, Yin F, Wang H, et al. International Journal of Hydrogen Energy, 2017, 42(27), 17376. 66 Pi Y, Shao Q, Wang P, et al. Advanced Functional Materials, 2017, 27(27), 1700886. 67 Jiang G, Chen M, Sun Y, et al. Dalton Transactions, 2024, 53, 1121. 68 Kong X, Niu J, Li M, et al. Waste Management, 2022, 143, 15. 69 Zeng Q, Yang G, Chen J, et al. Carbon, 2023, 202, 1. 70 Torregrosa-Rivero V, Sánchez-Adsuar M S, Illán-Gómez M J. Catalysis Today, 2023. 71 Teng Z, Zhang Z, Li X. Synthetic Metals, 2023, 293, 117256. 72 Zhang C, Liang X, Liu S. International Journal of Hydrogen Energy, 2011, 36(15), 8902. 73 Ji R, Yu K, Lou L L, et al. Inorganic Chemistry Communications, 2012, 25, 65. 74 Ayoob A K, Fadhil A B. Fuel, 2020, 264, 116754. 75 Sánchez-Olmos L A, Medina-Valtierra J, Sathish-Kumar K. Environmental Progress & Sustainable Energy, 2017, 36(2), 619. 76 Zhou Q, Zarei A, De Girolamo A, et al. Journal of Analytical and Applied Pyrolysis, 2019, 139, 167. 77 Al-Rahbi A S, Williams P T. Applied Energy, 2017, 190, 501. 78 Zhang M I A L L. Energy Research, 2021, 46(3), 3634. 79 Suarez-Escobar A F, Conde-Rivera L R, Lopez-Suarez F E, et al. Topics in Catalysis, 2021, 64(1), 51. 80 Conde-Rivera L R, Suarez-Escobar A F, Marin-Perez J J, et al. Mate-rials Letters, 2021, 291, 129590. 81 Singh K, Guillen C J d J, Dinic F, et al. ACS Materials Letters, 2020, 2(7), 798. 82 Davis E M, Bergmann A, Zhan C, et al. Nature Communications, 2023, 14(1), 4791. 83 Wang M, Wang Y, Xie W, et al. International Journal of Hydrogen Energy, 2023, 48(52), 19995.