Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 93-101    https://doi.org/10.11896/j.issn.1005-023X.2018.01.011
  物理   材料综述 |材料 |
多孔材料用于木材干燥过程中VOCs吸附的研究进展和探讨
王霞1(),安丽平1,张晓涛1,2,王喜明2
1 内蒙古农业大学理学院,呼和浩特 010018
2 内蒙古农业大学材料科学与艺术设计学院,呼和浩特 010018
Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying
Xia WANG1(),Liping AN1,Xiaotao ZHANG1,2,Ximing WANG2
1 College of Science, Inner Mongolia Agricultural University, Hohhot 010018
2 College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018
下载:  全 文 ( PDF ) ( 1183KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

木材干燥过程中会产生一系列有机挥发性气体(VOCs),这些气体对人体和环境都会带来巨大的危害。加强对木材干燥过程中产生VOCs的释放过程、释放控制和吸附的研究,即寻求环保高效的吸附剂是当前国内外研究的热点之一。在总结活性碳、活性碳纤维、活性碳纳米纤维、分子筛和蒙脱石基介孔材料等对VOCs吸附研究的基础上,探讨了新型MOFs材料在木材干燥工业过程中释放VOCs的应用可行性和发展前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王霞
安丽平
张晓涛
王喜明
关键词:  木材干燥  挥发性有机物(VOCs)  吸附  MOFs材料    
Abstract: 

A series of volatile organic compounds (VOCs) will be produced in drying process of wood, which will seriously endanger human body and destroy the ecological environment. Currently, it has been an universal concern to control the release and adsorption of VOCs in drying process of wood industry and seek the eco-friendly, highly effective adsorbents. This review firstly summarized the VOCs adsorption on the activated carbon, activated carbon fiber, activated carbon nanofiber, molecular sieves and montmorillonite mesoporous materials. Secondly, the utilization of the novel and appropriate MOFs in the VOCs adsorption during drying process of wood is introduced. Finally, the application of MOFs materials based on the achievements is proposed.

Key words:  wood drying    volatile organic compounds(VOCs)    adsorption    MOFs materials
出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  O641.4  
  TQ424  
基金资助: 国家重点研发计划(2016YFD0600701);国家自然科学基金(21467021);内蒙古自治区科技创新团队(202044);内蒙古草原英才创新团队(108061)
作者简介:  王霞:女,1993年生,硕士研究生,主要从事生物质吸附材料的研究 E-mail: xiawang954784618@qq.com
引用本文:    
王霞,安丽平,张晓涛,王喜明. 多孔材料用于木材干燥过程中VOCs吸附的研究进展和探讨[J]. 《材料导报》期刊社, 2018, 32(1): 93-101.
Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying. Materials Reports, 2018, 32(1): 93-101.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.011  或          https://www.mater-rep.com/CN/Y2018/V32/I1/93
Compound Formaldehyde Acetaldehyde Acraldehyde+butanone Carbinol Formic acid Benzoic acid
The total release
amount/(mg·m-3)
7 505 7 606 284 46 468 14 369 74
表1  木材干燥中部分VOCs的释放量
Sample SBET/(m2·g-1) Smic/(m2·g-1) Smeso/(m2·g-1) Adsorption capacity/(mg·g-1)
AC-1 941.07 769.11 171.96 151.3
AC-2 1 314.94 978.93 336.00 198.9
AC-3 1 072.84 510.36 562.48 148.1
AC-4 1 381.76 256.02 1 125.74 63.3
表2  不同活性碳的吸附效果
Sample SBET/(m2·g-1) Smic/(m2·g-1) Mass fraction/%
C O N C-C C-O C=O O-C=O
AC-2 1 314.94 978.93 95.170 4.259 0.571 53.37 15.78 12.83 13.19
AC-2-HNO3 989.92 735.59 92.846 6.078 1.077 46.66 15.98 14.11 16.09
AC-2-H2O2 1 088.78 784.79 94.132 5.631 0.237 49.04 15.55 15.23 15.01
AC-2-NH3-NH4Cl 1 079.85 803.46 95.544 3.840 0.616 61.78 10.45 12.14 11.38
表3  经HNO3、H2O2和NH3-NH4Cl处理后的活性碳样品特性参数和元素组成
Activated
carbon
Theoretical effective adsorption of pore volume/(mL·g-1)
Methylbenzene Dimethylbenzene Acetone Carbinol 1,2-Dichloroethane
AC-1 0.326 17 0.332 98 0.378 61 0.356 66 0.311 42
AC-2 0.278 78 0.273 08 0.431 48 0.411 05 0.271 81
AC-3 0.306 73 0.317 8 0.447 98 0.439 17 0.303 13
表4  不同活性碳的竞争吸附效果
Adsorbate Saturation of adsorbance
mg·g-1
Penetration of adsorbance
mg·g-1
Saturation time
min
Penetration time
min
Methylbenzene 32.469 8 0.359 3 190 110
Acetic ether 52.290 7 0.674 6 295 150
Acetone 86.404 1 0.963 3 400 210
表5  不同的VOCs在固定床层的相关参数
图1  蒙脱石的硅氧四面体和铝氧八面体结构示意图(电子版为彩图)
图2  蒙脱石原土和硫酸活化后蒙脱石的XRD谱
图3  苯系物分子进入MIL-101孔的示意图
图4  镧离子与葡萄糖结合简单原理图(电子版为彩图)
[1] Milota M R . Emissions from wood drying[J]. Forest Products Journal, 2000,50(6):10.
[2] Zhang G J, Li K, Lin Q , et al. Research progress of removing atmospheric pollutions by non-thermal plasma technology Materials Review B: Research Papers, 2015,29(1):137(in Chinese).
[2] 张贵剑, 李凯, 林强 , 等. 低温等离子体技术脱除大气污染物的研究进展[J]. 材料导报:研究篇, 2015,29(1):137.
[3] 龙玲 . 木材及其制品挥发性有机化合物释放及评价[M]. 北京: 科学出版社, 2012: 148.
[4] Britt D, Tranchemontagne D, Yaghi O M . Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. Proceedings of the National Academy of Sciences, 2008,105(33):11623.
[5] Ferey G, Draznieks C M, Serre C , et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005,309(5743):2040.
[6] Zhao L Y, Lu J M, Li Q L , et al. Present situation and progress in preparation of activated carbon Science Technology and Engineering, 2008,8(11):2914(in Chinese).
[6] 赵丽媛, 吕剑明, 李庆利 , 等. 活性碳制备及应用研究进展[J]. 科学技术与工程, 2008,8(11):2914.
[7] Bao Y Z . Study on preparation and adsorption performance of activated carbon from Salix psammophyla[D]. Hohhot: Inner Mongolia Agricultural University, 2012(in Chinese).
[7] 鲍咏泽 . 沙柳活性碳的制备及吸附性能研究[D]. 呼和浩特:内蒙古农业大学, 2012.
[8] Tang J H, Liang X Y, Long D H , et al. Effects of micropore and functional groups of activated carbon on adsorption behavior of formaldehyde Carbon Techniques, 2007,26(3):21(in Chinese).
[8] 汤进华, 梁晓怿, 龙东辉 , 等. 活性碳孔结构和表面官能团对吸附甲醛性能影响[J]. 碳素技术, 2007,26(3):21.
[9] Sun Z . Research on selective adsorption of VOCs on activated carbon[D]. Changsha: Central South University, 2011(in Chinese).
[9] 孙政 . 活性碳对有机气体的选择性吸附研究[D]. 长沙:中南大学, 2011.
[10] LiuJ, Han X, Shi Y . Study on microstructure of activated carbon for acetone recovery[J]. Chemistry and Industry of Forest Products, 2003,23(1):55.
[11] HuangZ H, Kang F Y, Yang J B , et al. Experimental and modeled results describing the adsorption of trace VOCs on activated carbon fibers Ion Exchange and Adsorption, 2001,17(6):487(in Chinese).
[11] 黄正宏, 康飞宇, 杨骏兵 , 等. 活性碳纤维对挥发性有机的吸附及其等温线的拟合[J]. 离子交换与吸附, 2001,17(6):487.
[12] XueW P, Sun H, Jiang L L , et al. Adsorption performance of VOCs onto activated carbon fiber Journal of Dalian Institute of Light Industry, 2007,26(2):152(in Chinese).
[12] 薛文平, 孙辉, 姜莉莉 , 等. VOCs在活性碳纤维上吸附性能的研究[J]. 大连轻工业大学学报, 2007,26(2):152.
[13] HuangZ H, Kang F Y, Wu H , et al. Adsorption of benzene and methyl-ethyl-ketone vapors at low concentration by wet oxidized porous carbons Journal of Tsinghua University(Science and Technology), 2000,40(10):111(in Chinese).
[13] 黄正宏, 康飞宇, 吴慧 , 等. 湿氧化改性多孔碳对低浓度苯和丁酮蒸汽的吸附[J]. 清华大学学报(自然科学版), 2000,40(10):111.
[14] ChenL P, Hong S G, Zhou X P , et al. Novel Pd-carrying composite carbon nanofibers based on polyaerylonitrile as a catalyst for Sonogashira coupling reaction[J]. Catalysis Communications, 2008,9(13):2221.
[15] KimS K, Jeon S . Simultaneous determination of serotonin and dopamine at the PEDOP/MWCNTs-Pd nanoparticle modified glassy carbon electrode[J]. Journal of Nanoscience and Nanotechnology, 2012,12(3):1903.
[16] ShirtliffV J, Hench L L . Bioactive materials for tissue engineering, regeneration and repair[J]. Journal of Materials Science, 2003,38(23):4697.
[17] DuJ, Ye X Y, Zou G L . Adsorption Performance of Carbon Nanofiber for VOC Journal of University of Jinan(Science and Technology), 2012,26(4):337(in Chinese).
[17] 杜婕, 叶孝勇, 邹光龙 . 活性碳纳米纤维对VOC的吸附性能[J]. 济南大学学报(自然科学版), 2012,26(4):337.
[18] GuoZ Y, Huang J T, Xue Z H , et al. Electrospun graphene oxide/carbon composite nanofibers with welldeveloped mesoporous structure and their adsorption performance for benzene and butanone[J]. Chemical Engineering Journal, 2016,306:99.
[19] WangQ F, Li F, Li L , et al. Study on preparation of a composite desulfurizer from biomass waste Materials Review B: Research Papers, 2016,30(4):21(in Chinese).
[19] 王奇飞, 李芬, 李梁 , 等. 基于生物质废弃物制备复合脱硫剂的研究[J]. 材料导报:研究篇, 2016,30(4):21.
[20] YangQ, Zhang J X, Yang J . Adsorption of VOCs on activated carbon modified by Mn Chinese Journal of Environmental Engineering, 2015,9(6):2963(in Chinese).
[20] 杨全, 张俊香, 杨俊 . Mn改性活性炭吸附VOCs性能[J]. 环境工程学报, 2015,9(6):2963.
[21] HaoL N, Xie Q, Li L T , et al. Catalytical preparation of mesoporous coal-based activated carbon by nitrate copper and nitrate manganese Carbon Techniques, 2008,27(4):26(in Chinese).
[21] 郝丽娜, 解强, 李兰廷 , 等. 金属盐催化制备煤基中孔活性碳的研究[J]. 碳素技术, 2008,27(4):26.
[22] QiaoW M, Song Y, Yoon S H , et al. Modification of commercial activated carbon through gasification by impregnated metal salts to develop mesoporous structures[J]. New Carbon Materials, 2005,20(3):198.
[23] PeiB. Improvement of activated carbon adsorption of low concentration toluene gas purification process[D]. Shanghai: Tongji Universtiy, 2008(in Chinese).
[23] 裴冰 . 活性碳吸附净化低浓度甲苯气体工艺改进研究[D]. 上海:同济大学, 2008.
[24] DavisM E, Lobo R F . Zeolite and molecular sieve synjournal[J]. Chemistry of Materials, 1992,4(4):756.
[25] ZhaoX S, Lu G Q, Millar G J . Advances in mesoporous molecular sieve MCM-41[J]. Industrial and Engineering Chemistry Research, 1996,35(7):2075.
[26] HartmannM, Kunz S, Chandrasekar G , et al. Shaping of mesoporous molecular sieves[J]. Studies in Surface Science and Catalysis, 2007,165(5):181.
[27] LiangX X, Bo L L, Liu J D , et al. Adsorption characteristics of typical VOCs on Cu-Mn-Ce/ZSM adsorbent fixed-bed Chinese Journal of Environmental Engineering, 2016,10(6):3152(in Chinese).
[27] 梁欣欣, 卜龙利, 刘嘉栋 , 等. 分子筛负载型吸附剂对典型VOCs的吸附行为特性[J]. 环境工程学报, 2016,10(6):3152.
[28] . LinX Q, , Preparation and characterization of montmorillonite based mesoporous materials and their adsorption performance for VOCs[D]. Guangzhou: Graduate University of Chinese Academy of Sciences( Guangzhou Institute of Geochemistry), 2015(in Chinese).
[28] 林小琴 . 蒙脱石基介孔材料(MPMs)的制备与表征及其对VOCs的吸附性能研究[D].广州:中国科学院研究生院(广州地球化学研究所), 2015.
[29] MadhusoodanaC D, Kameshima Y, Nakajima A , et al. Synjournal of high surface area Al-containing mesoporous silica from calcined and acid leached kaolinites as the precursors[J]. Journal of Collid and Interface Science, 2006,297(2):724.
[30] GonzalezE B, Jones W, Bahranowski K , et al. ESR characterization of vanadium centers supported on Al-containing mesoporous silica[J]. Microporous and Mesoporous Materials, 2001,50(1):61.
[31] YangH M, Deng Y H, Du C F , et al. Novel synjournal of ordered mesoporous materials Al-MCM-41 from bentonite[J]. Applied Clay Science, 2010,47(3):351.
[32] HuC B, Yang M L, Xian X F , et al. Correlation between structural characteristics and adsorption behaviors of porous metal-organic coordination polymers Materials Review, 2008,22(1):45(in Chinese).
[32] 胡传彬, 杨明莉, 鲜学福 , 等. 多孔金属-有机络合聚合物结构特征与其吸附行为关系[J]. 材料导报, 2008,22(1):45.
[33] HanS S, Goddard W A, William A , et al. High H2 storage of hexagonal metal-organic frameworks from first-principles-based grand canonical monte carlo simulations[J]. Journal of Physical Chemistry C, 2008,112(35):13431.
[34] ChenB, Eddaoudi M, Hyde S T , et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores[J]. Science, 2001,291(5506):1021.
[35] MuC Z, Xu F, Lei W . Application of functional metal-organic framework materials Progess in Chemistry, 2007,19(9):1345(in Chinese).
[35] 穆翠枝, 徐峰, 雷威 . 功能金属-有机骨架材料的应用[J]. 化学进展, 2007,19(9):1345.
[36] YanB, Ma R, Chu Z , et al. 2D Cationic metal-organic frameworks of Ag+ with mixed ligands(semi-rigid dipyridyl, 3-pmpmd, and diphosphine, dppe)[J]. Journal of Inorganic Organometallic Polymers and Materials, 2010,10(4):809.
[37] WuH, Simmons J M, Liu Y , et al. Metal-organic frameworks with exceptionally high methane uptake: Where and how is methane stored?[J]. Chemistry, 2010,16(17):5205.
[38] FuK, Huang S S, Zhao Z X , et al. Progress of the synjournal of metal organic frameworks materials and its application in organic gas adsorption New Chemical Materials, 2013,41(8):4(in Chinese).
[38] 符瞰, 黄思思, 赵祯霞 . MOFs材料合成及其对有机气体吸附研究进展[J]. 化工新型材料, 2013,41(8):4.
[39] LiY, Zhang H X, Yan K L , et al. Research progress on VOCs adsorption of metal-organic frameworks(MOFs) Guangzhou Chemical Industry, 2016,44(8):27(in Chinese).
[39] 李莹, 张红星, 闫柯乐 , 等. MOFs材料对挥发性有机物(VOCs)的吸附研究[J]. 广州化工, 2016,44(8):27.
[40] YaghiO M, Li G, Li H . Selective binding and removal of guests in a microprous metal-organic framework[J]. Nature, 1995,378(6558):703.
[41] EddaoudiM, Li H, Yaghi O M . Highly porous and stable metal-organic frameworks: Structure design and sorption properties[J]. Journal of American Chemistry Society, 2000,122(7):1391.
[42] MillwardA R, Yaghi O M . Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of American Chemistry Society, 2005,127(51):17998.
[43] YangK, Sun Q, Xue F , et al. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape[J]. Journal of Hazardous Materials, 2011,195(1):124.
[44] YangK, Xue F, Sun Q , et al. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177[J]. Journal of Environmental Chemical Engineering, 2013,1(4):713.
[45] JhungS H, Lee J H, Yoon J W , et al. Microwave synjournal of chromium terephthalate MIL-101 and its benzene sorption ability[J]. Advanced Materials, 2010,19(19):121.
[46] SahaD, Wei Z J, Deng S G . Hydrogen adsorption equilibrium and kinetics in metal-organic framework(MOF-5) synthesized with DEF approach[J]. Separation and Purification Technology, 2009,64(3):280.
[47] RowsellJ L C, Yaghi O M . Metal-organic frameworks: A new class of porous materials[J]. Microporous and Mesoporous Materials, 2004,73(1-2):3.
[48] GuZ Y, Yan X P . Metal Organic framework MIL101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene[J]. Angewandte Chemie, 2010,49(8):1477.
[49] XueF. Preparation of metal-organic frameworks(MOF-177)and adsorption of VOCs[D]. HangZhou: ZheJiang University, 2013(in Chinese).
[49] 薛峰 . 金属-有机骨架材料(MOF-177)制备及其吸附典型VOCs性能研究[D]. 杭州:浙江大学, 2013.
[50] WangT L, Zhang Y, Wang X H , et al. Research progress in zeoliticimidazolate frameworks(ZIFs) Chemical Industry and Engineering Progress, 2015,34(11):3959(in Chinese).
[50] 王天龙, 张燕, 王新红 , 等. 类沸石咪唑酯骨架材料(ZIFs)的研究进展[J]. 化工进展, 2015,34(11):3959.
[51] HuangC Y, Song M, Gu Z Y , et al. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance[J]. Environme-ntal Science and Technology, 2011,45(10):4490.
[52] YangR H, Zhang C, Huo J C , et al. Preparation and study of a novel glucoside aromatic ester based metal organic material Chinese Journal of Inorganic Chemistry, 2014,30(5):1073(in Chinese).
[52] 杨瑞环, 张驰, 霍冀川 , 等. 基于糖苷芳香酸酯的金属有机材料的制备与研究[J]. 无机化学学报, 2014,30(5):1073.
[53] 张瑜, 姜春明, 张红星 , 等. 挥发性有机物吸附材料研究进展[J]. 安全、健康和环境, 2016,16(6):1.
[54] ZhangL, Peng Y X, Zhang J , et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials[J]. Chinese Journal of Catalysis, 2016,37(6):800.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[3] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[4] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[5] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[6] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[7] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[8] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[9] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[10] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[11] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[12] 陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
[13] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[14] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[15] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed