Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 25010196-6    https://doi.org/10.11896/cldb.25010196
  金属与金属基复合材料 |
42CrMoVRE轴承钢滚动接触疲劳行为的有限元模拟研究
杜泽京1,2, 朱艳坤1,2, 张鹏1,2,*, 张哲峰1,2
1 中国科学技术大学材料科学与工程学院,沈阳 110016
2 中国科学院金属研究所沈阳材料科学国家研究中心,沈阳 110016
Finite Element Simulation on the Rolling Contact Fatigue Behavior of 42CrMoVRE Bearing Steel
DU Zejing1,2, ZHU Yankun1,2, ZHANG Peng1,2,*, ZHANG Zhefeng1,2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
下载:  全 文 ( PDF ) ( 15607KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 42CrMoVRE高温回火组织为回火索氏体,低温回火组织为与回火马氏体。在理想条件下进行了滚动接触疲劳模拟计算,结果显示最大剪切应力与最大塑性累计应变均出现在次表面下140 μm处,表明该位置处为滚动接触疲劳裂纹萌生危险区。滚动接触疲劳实验结果显示,对于次表面起源的滚动接触疲劳失效,裂纹出现在次表面下134 μm处,并向表面延伸导致最终失效,与模拟结果相对应。绘制了模拟计算累计塑性应变曲线,在3.5 GPa和4.5 GPa的接触应力下,高温回火组织与低温回火组织相比,应变曲线变化趋势相同、最大值提高,模拟结果与滚动接触疲劳实验S-N关系相吻合。该有限元方法为快速预测材料的滚动接触疲劳寿命提供了一种高效手段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜泽京
朱艳坤
张鹏
张哲峰
关键词:  42CrMoVRE钢  滚动接触疲劳  有限元方法  热处理    
Abstract: The high-temperature tempered microstructure (tempered sorbite) and low-temperature tempered microstructure (tempered martensite) of 42CrMoVRE steel were studied under idealized RCF simulation conditions. The results indicated that the maximum shear stress and cumulative plastic strain were concentrated at a subsurface depth of 140 μm, identifying this region as the critical area for RCF crack initiation. Experimental RCF results confirmed that for subsurface-origin failures, cracks formed near 140 μm below the surface and propagated towards the surface, ultimately causing failure, which aligned with the simulation predictions. Cumulative plastic strain curves were derived from simulation data. Under contact stresses of 3.5 GPa and 4.5 GPa, the strain curves for the high-temperature tempered and low-temperature tempered microstructures displayed similar trends, with higher maximum values observed for the latter. The simulation results corresponded well with the experimental S-N relationship for RCF. This finite element method provides an efficient approach for predicting the RCF life of materials, offering significant time-saving advantages.
Key words:  42CrMoVRE steel    rolling contact fatigue    finite element method    heat treatment processes
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TG142.1  
通讯作者:  *张鹏,博士,中国科学院金属研究所研究员、硕士研究生导师。目前主要从事金属材料的疲劳性能预测与优化方面的研究工作。pengzhang@imr.ac.cn   
作者简介:  杜泽京,中国科学技术大学材料科学与工程学院硕士研究生,在张鹏教授的指导下主要研究滚动接触疲劳的有限元模拟。
引用本文:    
杜泽京, 朱艳坤, 张鹏, 张哲峰. 42CrMoVRE轴承钢滚动接触疲劳行为的有限元模拟研究[J]. 材料导报, 2026, 40(2): 25010196-6.
DU Zejing, ZHU Yankun, ZHANG Peng, ZHANG Zhefeng. Finite Element Simulation on the Rolling Contact Fatigue Behavior of 42CrMoVRE Bearing Steel. Materials Reports, 2026, 40(2): 25010196-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010196  或          https://www.mater-rep.com/CN/Y2026/V40/I2/25010196
1 Qian Q H, Chen J. Tunnel Construction, 2021, 41(2), 157 (in Chinese).
钱七虎, 陈健. 隧道建设(中英文), 2021, 41(2), 157.
2 Guo H F, Yan J W, Zhang R, et al. Advances in Materials Science and Engineering, 2019, 2019, 2382759.
3 Sui G Y, Wang Z Q, Fang X M, et al. International Journal of Mechanical Sciences, 2023, 247, 108166.
4 Quan G Z, Tong Y, Luo G, et al. Computational Materials Science, 2010, 50, 167.
5 Chen C, Zhang F C, Yang Z N, et al. Materials & Design, 2015, 83, 422.
6 Liu S, Yan Y, Wang B, et al. Transactions of Materials and Heat Treatment, 2023, 44(6), 90 (in Chinese).
刘帅, 颜莹, 王斌等. 材料热处理学报, 2023, 44(6), 90.
7 Wang L M. Journal of the Chinese Rare Earth Society, 2004, 1(22), 48 (in Chinese).
王龙妹. 中国稀土学报, 2004, 1(22), 48.
8 Fu H W, Cui Y N, Zhang C, et al. China Mreallurgy, 2020, 30(9), 11 (in Chinese).
付悍巍, 崔一南, 张弛等. 中国冶金, 2020, 30(9), 11.
9 Hertz H. J Reine Und Angewandte Mathematik, 1881, 92, 156.
10 Han X Q, Li S X, Sun C Q, et al. Engineering Fracture Mechanics, 2024, 297, 109873.
11 Zamzam Golmohammadi, Aditya Walvekar, Farshid Sadeghi. Tribology International, 2018, 126, 258.
12 Mohammad Salahi Nezhad, Fredrik Larsson, Elena Kabo, et al. Engineering Fracture Mechanics, 2024, 310, 110503.
13 Chaboche J L. International Journal of Plasticity, 1989, 5, 247.
14 Chaboche J L, Nouailhas D. The Journal of Engineering Materials and Technology, 1989, 111, 384.
15 Sadeghi F, Jalalahmadi B, Slack T S, et al. Journal of Tribology, 2009, 131(4), 1.
16 Fu H, Rivera-Díaz-Del-Castillo P E J. Acta Materialia, 2018, 155, 43.
17 Duan C F, Qu S G, Hu X F, et al. Wear, 2022, 494-495, 204252.
18 Johnson K L. Contact mechanics, Cambridge: Cambridge University Press, UK, 1987.
19 Sackfield A, Hills D A, Nowell D. Mechanics of elastic contacts, Amsterdam, Elsevier, UK, 2013.
20 Shiozawa K, Morii Y, Nishino S, et al. International Journal of Fatigue, 2006, 28, 1521.
21 Anup S. Pandkar, Nagaraj Arakere, Ghatu Subhash, et al. International Journal of Fatigue, 2014, 63, 191.
22 Evans M H, Richardson A, Wang L, et al. Tribology International, 2014, 75, 87.
23 Nakai Y, Shiozawa D, Kikuchi S, et al. Procedia Structural Integrity, 2016, 2, 3117.
24 Johnson K L. Proceedings of the Institution of Mechanical Engineers Part C: Mechanical Engineering Science, 2016, 203(3), 151.
[1] 李坤, 李瑞红, 任慧平, 胡文鑫, 王海燕, 杨正华. 导热稀土镁合金研究进展[J]. 材料导报, 2026, 40(2): 24110139-11.
[2] 黄海旺, 甘雪薇, 孙建平. 速生木材力学性能强化改性研究进展[J]. 材料导报, 2026, 40(2): 24120204-13.
[3] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[4] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[5] 顾建, 李冬青, 刘胜春, 司佳钧. 高强铝镁硅合金线电致热影响规律及机制研究[J]. 材料导报, 2025, 39(23): 24100236-6.
[6] 谢苗, 付俊伟, 赵茂密, 卢照. 6xxx铝合金耐蚀性能的研究进展[J]. 材料导报, 2025, 39(20): 24100089-13.
[7] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[8] 李秋生, 李安敏, 眭清平. 原位反应法制备ZrB2/Al-12Si复合材料的显微组织及高温蠕变性能[J]. 材料导报, 2025, 39(19): 24070139-9.
[9] 付同宇, 曹燕光, 李昭东, 魏坤霞, 张建卫, 谭峰亮. 基于超声法对不同状态高强度结构钢板残余应力研究[J]. 材料导报, 2025, 39(17): 24060139-7.
[10] 马宁, 朱建锋, 常柯, 秦宇星, 毛勇, 马文宗. 不同温度退火热处理对Al-Mg-Ga-Sn可溶铝合金塑性及组织的影响研究[J]. 材料导报, 2025, 39(17): 24080053-8.
[11] 李灏, 刘宇伦, 刘金龙, 陈良贤, 李成明, 魏俊俊. 真空热处理对金刚石基TaxN薄膜微观结构及电学性能的影响[J]. 材料导报, 2025, 39(15): 24060003-5.
[12] 张鹏德, 李广, 刘玉鹏, 石玗. 热处理对热丝激光增材制造17-4PH不锈钢组织性能的影响[J]. 材料导报, 2025, 39(15): 24080123-7.
[13] 冯殿远, 刘诗超, 王善林, 李欢欢, 洪敏, 涂文斌. 热处理对30CrMnSiNi2A钢电子束焊接头组织和性能的影响[J]. 材料导报, 2025, 39(14): 24040172-7.
[14] 杨红兵, 邵子恒, 颜莹, 谷金波, 迟宏宵, 王斌, 张鹏, 张哲峰. 表面渗碳高强轴承钢滚动接触疲劳行为研究[J]. 材料导报, 2025, 39(12): 24050074-9.
[15] 徐升亮, 廖凯, 杨湘杰, 郭洪民. Sc含量及热处理对Al-Si-Cu-Mg合金组织及热学性能的影响[J]. 材料导报, 2025, 39(11): 24060195-8.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed