Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 25030086-6    https://doi.org/10.11896/cldb.25030086
  无机非金属及其复合材料 |
铜矿废石机制砂吸附行为及与聚羧酸减水剂作用效率研究
元强1,2, 胡艺瀚1, 李苏宁1, 刘正湘1, 田义1,2,*
1 中南大学土木工程学院,长沙 410075
2 高速铁路建造技术国家工程研究中心,长沙 410075
Study of Adsorption Behavior of Copper Mine Tailings-based Manufactured Sand and Its Interaction Efficiency with Polycarboxylate Superplasticizer
YUAN Qiang1,2, HU Yihan1, LI Suning1, LIU Zhengxiang1, TIAN Yi1,2,*
1 School of Civil Engineering, Central South University, Changsha 410075, China
2 National Engineering Research Center of High-speed Railway Construction Technology, Changsha 410075, China
下载:  全 文 ( PDF ) ( 5771KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜矿废石制备机制砂是实现废石资源化利用的重要路径。本工作首先分析了千枚岩型和斑岩型铜矿废石机制砂岩相分布特征,明确了石粉类型及其含量对水泥砂浆流变行为的影响规律;进一步研究了石粉对聚羧酸减水剂(PCE)吸附行为及其作用效率的影响机制。研究结果表明:铜矿山废石的斑岩粉和千枚岩粉比河砂粉具有更强的吸水性能,MB值也更高;在相同石粉掺量下,PCE作用效率表现为:千枚岩型<斑岩型<河砂。机制砂石粉的矿物组分及脉石相与金属相的嵌布关系显著影响了PCE作用效率,特别是在千枚岩型石粉中,由于其较高的黏土矿物含量以及液相中较强的阴离子强度,PCE在竞争吸附和插层吸附的同时发生分子间聚集,从而降低其分散效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
元强
胡艺瀚
李苏宁
刘正湘
田义
关键词:  铜矿废石  机制砂  聚羧酸减水剂  吸附行为    
Abstract: The utilization of copper mine tailings to produce manufactured sandcan facilitate resource recycling. In this work, the petrographic distribution of manufactured sand derived from phyllite-type and porphyry-type copper mine tailings was first analyzed, the effect of the powder type and content on the rheological behavior of cement mortar was identified, and the adsorption behavior and efficiency of polycarboxylate superplasticizers (PCE) was further investigated. The results indicate that phyllite-type and porphyry-type copper mine tailings have better water absorption ability and higher MB values compared to river sand powders. With equal powder dosage, PCE performance is lowest in phyllite-type aggregates, intermediate in porphyry-type, and highest in river sand. The mineral composition of the manufactured sand powder between gangue phases and metallic phases significantly affects the efficiency of PCE. Notably, in the case of phyllite-type stone powder, its higher clay mineral content and stronger anionic strength in the cement liquid phase induce aggregation with competitive and intercalation adsorption, thereby undermining the dispersion efficiency of PCE.
Key words:  copper mine tailings    manufactured sand    polycarboxylate superplasticizer    adsorption behavior
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TU521.1  
基金资助: 国家重点研发计划(2023YFC3904202;2023YFC3904205);国家自然科学基金青年项目(52308297)
通讯作者:  * 田义,博士,中南大学土木土木工程学院讲师。主要从事水泥混凝土外加剂理论与开发、碱激发胶凝材料、固体废弃物建材资源化利用等方面的研究。tianyi24@csu.edu.cn   
作者简介:  元强,中南大学土木工程学院教授、博士研究生导师。长期围绕高速铁路建造与养维关键水泥基材料、3D 打印水泥基材料、新型结构材料、绿色低碳材料等领域开展研究。
引用本文:    
元强, 胡艺瀚, 李苏宁, 刘正湘, 田义. 铜矿废石机制砂吸附行为及与聚羧酸减水剂作用效率研究[J]. 材料导报, 2026, 40(1): 25030086-6.
YUAN Qiang. Study of Adsorption Behavior of Copper Mine Tailings-based Manufactured Sand and Its Interaction Efficiency with Polycarboxylate Superplasticizer. Materials Reports, 2026, 40(1): 25030086-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25030086  或          https://www.mater-rep.com/CN/Y2026/V40/I1/25030086
1 Wu J Y, Jing H W, Yin Q, et al. Journal of Cleaner Production, 2020, 276, 123189.
2 Ren Q, Tao Y X, Jiang Z W, et al. Construction and Building Materials, 2024, 411, 134303.
3 Song S M, Hu Y Y. Journal of Building Materials, 2025(7), 1 (in Chinese).
宋少民, 胡幼奕. 建筑材料学报, 2025(7), 1.
4 Xia Y J, Zhang Y, Zhang Y S, et al. Materials Reports, 2025, 39 (9), 24030199(in Chinese).
夏益健, 张宇, 张云升, 等. 材料导报, 2025, 39 (9), 24030199.
5 Yao H H, Cai L B, Liu W, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(6), 1649 (in Chinese).
姚华辉, 蔡练兵, 刘维, 等. 中国有色金属学报, 2021, 31(6), 1649.
6 China Nonferrous Metallurgy, 2024, 53(6), 137 (in Chinese).
中国有色冶金, 2024, 53(6), 137.
7 Wang C L, Fu X S, Yang C X, et al. Materials Reports, 2025, 39 (14), 24050044 (in Chinese).
王长龙, 付兴帅, 杨彩霞, 等. 材料导报, 2025, 39 (14), 24050044.
8 Xiao B L, Yang Z Q, Gao Q, et al. Materials Reports, 2018, 32(14), 2400(in Chinese).
肖柏林, 杨志强, 高谦, 等. 材料导报, 2018, 32(14), 2400.
9 Wang Z, Li H J, Huang F L, et al. Journal of Building Materials, 2023, 26(3), 251(in Chinese).
王振, 李化建, 黄法礼, 等. 建筑材料学报, 2023, 26(3), 251.
10 Ng S, Plank J. Cement and Concrete Research, 2012, 42(6), 847.
11 Lei L, Plank J. Cement and Concrete Research, 2014, 60, 1.
12 Ma B G, Yang H, Tan H B, et al. Journal of the Chinese Ceramic Society, 2013, 41(3), 328(in Chinese).
马保国, 杨虎, 谭洪波, 等. 硅酸盐学报, 2013, 41(3), 328.
13 Martín V I, Rodríguez A, Laschewsky A, et al. Journal of Colloid and Interface Science, 2014, 430, 326.
14 Huang T J, Li B Y, Yuan Q, et al. Cement and Concrete Composites, 2019, 104, 103403.
15 Ma Y H, Bai J J, Shi C J, et al. Cement and Concrete Research, 2021, 142, 106343.
16 Liu J, Yu C, Shu X, et al. Cement and Concrete Research, 2019, 124, 105834.
17 Tian Y, Xie Z L, Xue K W, et al. Construction and Building Materials, 2023, 373, 130852.
18 Feng H, Pan L S, Zheng Q, et al. Construction and Building Materials, 2018, 170, 182.
19 Borralleras P, Segura I, Aranda M A G, et al. Construction and Building Materials, 2020, 236, 116657.
20 Nakayenga J, Cikmit A A, Tsuchida T, et al. Construction and Building Materials, 2021, 305, 124710.
21 Chen X, Guo Y G, Li B, et al. Construction and Building Materials, 2020, 240, 117953.
22 Zhang G T, Liu J H, Kong L J, et al. Materials Reports, 2021, 35(6), 6071 (in Chinese)
张广田, 刘娟红, 孔丽娟, 等. 材料导报, 2021, 35(6), 6071.
23 Xie Z L, Tian Y, Li Y X, et al. Journal of Building Engineering, 2023, 76, 107408.
24 Bessaies-Bey H, Baumann R, Schmitz M, et al. Cement and Concrete Research, 2015, 76, 98.
25 Yang J E, Huang H J, Zhu L, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123855.
26 Xie Z L, Li Y X, Sun D H, et al. Waste Disposal & Sustainable Energy, 2024, 6(1), 139.
[1] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[2] 贡力, 赵学昊, 许天乐, 卜延忠, 杨腾腾, 秦军, 党丹丹. 硫酸盐环境下沙漠砂混凝土抗冻耐久性及界面微观结构研究[J]. 材料导报, 2025, 39(22): 24100076-10.
[3] 杨旭, 张海波, 师广岭, 侯成岩, 周伟. 粉磨原位合成PCE对自减水型水泥性能的影响[J]. 材料导报, 2025, 39(10): 24010074-7.
[4] 肖民, 吴娟, 奚健杨, 李方贤, 祝雯, 韦江雄. 基于Mazars损伤模型评价不同粗糙度机制砂砂浆的抗裂性能[J]. 材料导报, 2024, 38(21): 23060117-6.
[5] 向顺成, 郑廷祥, 高英力, 史威, 蒋震, 何彦琪, 曾维. 聚氨酯改性聚羧酸盐的合成及与水泥净浆的相互作用[J]. 材料导报, 2024, 38(21): 23040167-7.
[6] 许应杰, 陈红鸟. 长龄期机制砂再生骨料混凝土的断裂参数和断裂过程区[J]. 材料导报, 2024, 38(19): 23040205-10.
[7] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[8] 韩照, 张云升, 乔宏霞, 冯琼, 薛翠真, 尚明刚. 基于CT扫描及图像处理技术的机制砂形貌研究[J]. 材料导报, 2023, 37(19): 22060032-6.
[9] 戴民, 李姝蓉, 赵明宇. 基于流变模型的降黏型聚羧酸减水剂的试验研究[J]. 材料导报, 2023, 37(17): 22030273-5.
[10] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[11] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[12] 单广程, 陈健, 乔敏, 高南箫, 赵爽, 吴井志, 朱伯淞, 冉千平. 缓释技术在混凝土中的应用研究进展[J]. 材料导报, 2022, 36(5): 20050237-7.
[13] 刘玲, 衣军勇, 肖刚, 方伟, 崔景亮, 田洪雷, 赵曰琦. 蒙脱土对聚羧酸减水剂的吸附行为研究[J]. 材料导报, 2021, 35(z2): 158-162.
[14] 潘阳, 汪源, 汪苏平, 胡志豪, 李正平, 张满, 张云. 高保坍型聚羧酸减水剂的制备及其在水溶液中的自组装行为[J]. 材料导报, 2021, 35(z2): 167-171.
[15] 文轩, 胡志豪, 汪苏平, 张云, 汪源. 交联型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2021, 35(z2): 172-175.
[1] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[2] LI Hongfeng, QU Chunyan, WANG Dezhi, LIU Zhongliang, GU Jiyou, ZHANG Yang. Curing Kinetics and Fracture Toughness of BDM/DABPA System Modified by Short Glass Fiber Reinforced Polyether Ketone Ketones (PEKK-GF)[J]. Materials Reports, 2018, 32(6): 971 -976 .
[3] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[4] WANG Keqiang, YE Shenjie, WANG Wenjin, FU Jia, CHEN Zhongren. Effect of Asymmetric Block Copolymer PS-b-PMMA on the Compatibility of PCHMA/PMMA Blends by Different Blending Methods: Interface vs Micelles[J]. Materials Reports, 2017, 31(8): 98 -103 .
[5] ZHOU Shuangshuang, LIU Xiqin, LIU Zili, HOU Zhiguo, TIAN Qingchao. Effect of Normalizing Process on Microstructure Evolution and Tensile
Properties of Cold-rolled Low-alloy Cryogenic Steel
[J]. Materials Reports, 2017, 31(6): 98 -104 .
[6] ZHAO Ming, LI Tianyu, SHI Yu. Effect of Ce-La Oxide Composite on the Microstructure and Varistor
Properties of ZnVCrO Based Ceramics
[J]. Materials Reports, 2017, 31(6): 120 -124 .
[7] WANG Bin, XUE Wenbin, CHEN Lin , WEI Kejian, WU Zhenglong. Growth Mechanism of Boride Layer Formed via Plasma Electrolytic Borocarburizing on Surface of Low-carbon Steel[J]. Materials Reports, 2017, 31(14): 67 -71 .
[8] ZHANG Haidong,WEI Jiangxiong, ZHAO Zhiguang, YU Qijun, LI Fangxian. Influence of Calcium Silicate Hydrate Seed on Compressive Strength of CaO-SiO2-H2O Autoclaved System and Its Mechanism Analysis[J]. Materials Reports, 2017, 31(14): 122 -126 .
[9] DAI Qingsong, OU Shisheng, DENG Yunlai, FU Ping, ZHANG Jiaqi. Microstructure Evolution and Grain Size Model of 5083 Aluminum Alloy During Hot Deformation[J]. Materials Reports, 2017, 31(14): 143 -146 .
[10] BAI Pengfei, MIN Xiaohua, TAO Xiaojie, ZHONG Gongcheng, BAI Shuyu, CHENG Congqian, ZHAO Jie. Effect of Microstructure on Necking of Medical U-shaped Nail of TC4 Titanium Alloy[J]. Materials Reports, 2017, 31(13): 146 -150 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed