Please wait a minute...
材料导报  2026, Vol. 40 Issue (1): 24120074-5    https://doi.org/10.11896/cldb.24120074
  金属与金属基复合材料 |
搅拌摩擦封焊过程扭矩和温度场变化规律研究
张昌青1,2, 刘恩荣2, 王栋2, 王亚雄2, 石消飞2, 王一帆2, 张鹏省3,*
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
3 西北有色金属研究院,西安 710016
Study on the Variation Patterns of Torque and Temperature Field During Friction Stir Welding and Sealing Process
ZHANG Changqing1,2, LIU Enrong2, WANG Dong2, WANG Yaxiong2, SHI Xiaofei2, WANG Yifan2, ZHANG Pengsheng3,*
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
3 Northwest Nonferrous Metals Research Institute, Xi'an 710016, China
下载:  全 文 ( PDF ) ( 14373KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 搅拌摩擦焊接过程中,摩擦扭矩和焊接温度场反映了母材的塑性变形状态。本工作对7075-T6铝合金无缝管环形焊缝进行封焊,采用主轴电机电压电流(Voltage and current of main shaft motor,VCMSM)法计算出不同摩擦转速、焊接速度和焊接顺序下搅拌摩擦焊过程中搅拌头与母材间的摩擦扭矩,并对焊缝温度进行采集。结果表明,摩擦扭矩在经历两次波动后逐渐趋于稳定并建立稳定摩擦的趋势,摩擦扭矩波动较小的工艺参数焊缝成形较好;焊接过程温度峰值主要受到工艺参数的影响,前进侧在管件内侧焊接温度峰值比前进侧在外侧更高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张昌青
刘恩荣
王栋
王亚雄
石消飞
王一帆
张鹏省
关键词:  搅拌摩擦焊  摩擦扭矩  焊接温度场  封焊  7075铝合金    
Abstract: During the friction stir welding process, the frictional torque and the welding temperature field mirror the plastic deformation status of the base material. In this work, the friction stir welding of the seamless aluminum alloy pipe of 7075-T6 was performed. The frictional torque between the tool and the base material was calculated by employing the voltage and current of main shaft motor method at three different welding process parameters: friction speeds, welding speeds, and welding directions. The welding temperature was measured indirectly by converting the tempe-rature signal into an electrical signal through a K-type thermocouple and an AD8495 amplifier. The experimental findings revealed that the friction torque exhibited a characteristic trend of undergoing two distinct fluctuations before gradually stabilizing to establish a steady friction regime. Process parameters associated with reduced torque fluctuations produced welds with enhanced formation quality. Meanwhile, the peak temperature during welding was predominantly governed by process parameters, with configurations featuring the advancing side positioned internally exhibiting higher peak temperatures compared to those with externally positioned advancing sides.
Key words:  friction stir welding    frictional torque    welding temperature field    seal welding    7075 aluminum alloy
出版日期:  2026-01-10      发布日期:  2026-01-09
ZTFLH:  TG456.9  
基金资助: 国家自然科学基金(52261013;52465043)
通讯作者:  * 张鹏省,西北有色金属研究院教授级高级工程师,西北工业大学、西安建筑科技大学、内蒙古工业大学专硕企业导师。主要从事钛及钛合金新材料设计及加工技术研究。zhangpengsheng2015@163.com   
作者简介:  张昌青,博士,兰州理工大学研究员、硕士研究生导师。从事先进材料的摩擦焊、钎焊及阻焊等方向的固相连接基础理论与应用技术研究。
引用本文:    
张昌青, 刘恩荣, 王栋, 王亚雄, 石消飞, 王一帆, 张鹏省. 搅拌摩擦封焊过程扭矩和温度场变化规律研究[J]. 材料导报, 2026, 40(1): 24120074-5.
ZHANG Changqing. Study on the Variation Patterns of Torque and Temperature Field During Friction Stir Welding and Sealing Process. Materials Reports, 2026, 40(1): 24120074-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120074  或          https://www.mater-rep.com/CN/Y2026/V40/I1/24120074
1 Shah F, Younas M, Khan M, et al. Welding in the World, 2023, 67, 309.
2 Dong J, Xie Y, Meng X, et al. Materials Characterization, 2024, 214, 114.
3 Bharti S, Kumar S, Singh I, et al. Journal of Marine Science and Engineering, 2024, 12, 71.
4 Eliseev A, Amirov A, Kalashnikova T, et al. Metals, 2021, 11, 1566.
5 Guru Sewak Kesharwani, Kiran Kumar Billa, Juhi Verma, et al. Physica Scripta, 2024, 99, 7.
6 Manuel N, Beltrão D, Galvão I, et al. Materials, 2021, 14, 60.
7 Liu F, Sun Z, Tuo Y, et al. The International Journal of Advanced Ma-nufacturing Technology, 2020, 106, 1465.
8 Changqing Zhang, Shuwen Wang, Dechun Luo, et al. Journal of Manufacturing Processes, 2021, 67, 241.
9 Andrade D G, Leitão C, Dialami N, et al. International Journal of Mechanical Sciences, 2020, 182, 105.
10 Oezkaya E, Biermann D. International Journal of Mechanical Science, 2017, 128, 695.
11 Fenjun Liu, Li Fu, Haiyan Chen. International Journal of Advanced Manufacturing Technology, 2018, 96, 1823.
12 Navaser M, Atapour M. Journal of Materials Science & Technology, 2017, 33, 155.
13 Zhe Liu, Wei Guan, Huijun Li, et al. Journal of Manufacturing Processes, 2022, 84, 1122.
14 Shi Hyoung Ryu, Chong Nam Chu. International Journal of Machine Tools and Manufacture, 2005, 45, 1523.
15 Yaknesh S, Sevvel P, Sampathkumar K, et al. Materials Science and Technology, 2022, 39, 613.
16 Das H, Mondal M, Hong S, et al. Journal of Mechanical Science and Technology, 2020, 34, 2011.
[1] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[2] 张昌青, 马东东, 谷怀壮, 王栋, 刘恩荣, 张鹏省. 1060-H24纯铝无轴肩微型搅拌摩擦焊的数值模拟分析[J]. 材料导报, 2025, 39(5): 24020082-6.
[3] 杨瑞琛, 王进, 高波, 张帅, 张新月. 水冷介质对铜铝异种金属薄板搅拌摩擦焊焊缝性能的影响[J]. 材料导报, 2025, 39(17): 24050098-6.
[4] 张兵宪, 陈素明, 贺韡, 牛鹏亮, 黄春平. 补焊对7050-T7451高强铝合金搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2025, 39(10): 24040146-6.
[5] 聂浩, 徐洋, 柯黎明, 邢丽. 转速对厚板铝/镁异种材料搅拌摩擦焊摩擦产热及界面组织的影响[J]. 材料导报, 2023, 37(8): 21090144-6.
[6] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[7] 张兵宪, 陈聪, 刘丰刚, 牛鹏亮, 刘强, 黄春平. 7050-T7451铝合金搅拌摩擦焊接头组织和性能[J]. 材料导报, 2023, 37(24): 22030282-5.
[8] 殷晓龙, 王志林, 王婉, 于贺春, 王汉斌, 闫文杰. 深冷挤出切削制备超细晶7075铝合金的组织、性能及时效行为研究[J]. 材料导报, 2023, 37(22): 22070192-6.
[9] 张昌青, 崔国胜, 陈波阳, 刘晓, 王烨, 史煜. Zn中间层对大直径铝/钢连续驱动摩擦焊摩擦扭矩及接头界面微观组织的影响[J]. 材料导报, 2023, 37(20): 22030025-5.
[10] 陈轩, 李萌蘖, 卜恒勇, 左汉宁. 7系铝合金焊接技术的研究现状及展望[J]. 材料导报, 2023, 37(13): 21010106-9.
[11] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[12] 高士康, 赵洪运, 李高辉, 周利, 刘会杰, 张成聪. 铝基复合材料搅拌摩擦焊研究现状[J]. 材料导报, 2022, 36(24): 21040264-9.
[13] 郑洋, 宿振宇, 张璇. 铝/镁异质金属搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(z2): 346-352.
[14] 于芳, 晁代义, 邢雷, 王欣, 黄同瑊, 王向杰. 单级时效工艺对7075铝合金包覆薄板力学性能的影响[J]. 材料导报, 2021, 35(Z1): 411-413.
[15] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[1] ZHANG Kaiming, LI Chunyu, SUN Hongru, HAN Zijian, ZHANG Xu, WEI Shuang,LU Xuge, DONG Wei, SHEN Ding, YANG Shaobin. First-principles Study of Boron-doped Graphene as Anode Material for Lithium-ion Batteries[J]. Materials Reports, 2025, 39(24): 24120040 -9 .
[2] LIAO Muzi, HE Liang, WANG Baokai, NIU Mengyang, SUN Chang, YUAN Yunqi,CAO Wenbin, WANG Qi. Influence of Dispersants on the Dispersion Performance of SiO2 Aerogel Powder in Aqueous Systems[J]. Materials Reports, 2025, 39(24): 24120191 -6 .
[3] . [J]. Materials Reports, 2026, 40(1): 0 .
[4] WU Yue. Applications of Plasma in Preparation and Modification of Cathode Materials for Metal-ion Batteries[J]. Materials Reports, 2026, 40(1): 24120198 -12 .
[5] LI Chaolei. Study on Radial Pores Structure of Microporous Layer with High Mass Transportation in Proton Exchange Membrane Fuel Cells[J]. Materials Reports, 2026, 40(1): 25010096 -5 .
[6] YANG Han. MOPSO-based Optimization Design of the Structural Parameters of Π-type Air-cooled BTMS[J]. Materials Reports, 2026, 40(1): 24090090 -9 .
[7] WANG Shijun, YANG Ming, WANG Wenjia. Application of MXene-based Composites in Aviation Field[J]. Materials Reports, 2026, 40(1): 25010040 -9 .
[8] CHEN Wei, HOU Sifan, WANG Wei, FAN Jinpeng. Synthesis and Properties of High-temperature-resistant Alumina-based Nanorod Aerogels[J]. Materials Reports, 2026, 40(1): 25020183 -9 .
[9] HU Pengfei, LIN Jie, YANG Jiaxin, JIANG Yun, XIE Chen. A Review on the Regulation of Transition Metal Carbide Ceramics Properties by Carbon Vacancies[J]. Materials Reports, 2026, 40(1): 24120017 -11 .
[10] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed