Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 23120170-6    https://doi.org/10.11896/cldb.23120170
  无机非金属及其复合材料 |
针刺密度对碳/碳复合材料力学行为影响的仿真分析
董洪年*, 杨明, 林天一, 陈沛然, 魏婷婷
上海航天动力技术研究所,上海 201108
Effects of Needle Density on Mechanical Behavior of Carbon/Carbon Composite
DONG Hongnian*, YANG Ming, LIN Tianyi, CHEN Peiran, WEI Tingting
Shanghai Space Propulsion Technology Research Institute, Shanghai 201108, China
下载:  全 文 ( PDF ) ( 22218KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针刺工艺参数的优化控制,对综合改善碳/碳复合材料的力学性能至关重要。发展基于仿真技术的“虚拟现实试验”方法,可快速、并发地优选出最优的针刺工艺参数组合方式。本工作建立了不同针刺密度(25针/cm2、36针/cm2、64针/cm2和100针/cm2)下的针刺碳/碳复合材料单胞模型,并分别将最大应力准则和Hashin失效准则应用于网胎层和无纬布层的失效分析中,结合周期性边界条件,分析得到了针刺密度对碳/碳复合材料损伤失效模式及力学行为的影响机制。研究发现:随着载荷的增加,无论是网胎层,还是无纬布层,裂纹都萌生于针刺纤维束的圆周边界,且裂纹呈现出与加载方向成近±45°的“十”字交叉型式。对于高针刺密度的碳/碳复合材料,由于针刺纤维束对其面内造成的损伤区域占比更高,使其更容易出现垂直于加载方向的横向裂纹损伤,从而削弱了材料的承载能力。相比于25针/cm2,针刺密度为36针/cm2、64针/cm2和100针/cm2的碳/碳复合材料,其断裂强度分别下降了约3%、5%和19%。此外,割线刚度退化结果表明,在失效前,针刺碳/碳复合材料的力学行为表现出了一定的非线性。这主要是由拉伸开裂过程中的渐进损伤所引起的。本工作所建立的仿真模型可用于指导针刺碳/碳复合材料预制体构型的优化设计。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董洪年
杨明
林天一
陈沛然
魏婷婷
关键词:  碳/碳复合材料  针刺  工艺参数  单胞  力学性能    
Abstract: The optimal control of needle punching process parameters is very important to improve the mechanical properties of carbon/carbon compo-site. The development of “virtual reality test” method based on simulation technology can quickly and concurrently optimize the optimal combination of needle punching process parameters. In this work, the unit cell model of needle-punched C/C composites (NP C/C) with different needling densities (25 pin/cm2, 36 pin/cm2, 64 pin/cm2 and 100 pin/cm2) is established, and the maximum stress criterion and Hashin failure criterion are applied to the failure analysis of fiber web layer and weft-free layer, respectively, based on the periodic boundary condition. The mechanism of the influence of the needling density on the damage failure mode and mechanical behavior of NP C/C is analyzed. It is found that with the increase of loading, the cracks first appear at the circumferential boundary of the needle-punched fiber bundle in both the fiber web layer and the weft-free layer. Moreover, the cracks appear a “Cross” type which is nearly ±45° with the direction of loading. For C/C composite with higher needled density, the proportion of damage area caused byneedle-punched fiber bundles is higher, making it more prone to transverse cracks perpendicular to the loading direction, thereby weakening the material’s load-bearing capacity. Compared to 25 pin/cm2, the fracture strength of NP C/C with needle density of 36 pin/cm2, 64 pin/cm2, and 100 pin/cm2 decreases by 3%, 5%, and 19%, respectively. In addition, the results of secant stiffness degradation indicate that the mechanical behavior of NP C/C exhibits non-linearity before failure. This is mainly caused by progressive cracking damage during the tensile process. The model established in this paper can be used to guide the optimal design of the preform of NP C/C.
Key words:  C/C composite    needle-punched    technological parameter    unit cell    mechanical property
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TB332  
基金资助: 装备预先研究共用技术项目(50920020101)
通讯作者:  *董洪年,2016年6月、2022年10月先后于南京航空航天大学获得工学学士学位和博士学位。目前主要研究领域为固体推进技术。donghongnian@126.com   
引用本文:    
董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
DONG Hongnian, YANG Ming, LIN Tianyi, CHEN Peiran, WEI Tingting. Effects of Needle Density on Mechanical Behavior of Carbon/Carbon Composite. Materials Reports, 2025, 39(9): 23120170-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120170  或          https://www.mater-rep.com/CN/Y2025/V39/I9/23120170
1 Liu Y F, Feng X, Wang J M, et al. Journal of Inorganic Materials, 2020, 35(10), 1105 (in Chinese).
刘宇峰, 俸翔, 王金明, 等. 无机材料学报, 2020, 35(10), 1105.
2 Wang H Y, Jia J G, Liu D Q, et al. Materials Reports, 2022, 36(13), 21040028 (in Chinese).
王晓昱, 贾建刚, 刘第强, 等. 材料导报, 2022, 36(13), 21040028.
3 Gou J X, Zhang C Y, Wu X J, et al. Materials Reports, 2013, 27(7), 74 (in Chinese).
缑建杰, 张程煜, 吴小军, 等. 材料导报, 2013, 27(7), 74.
4 Zou J J. Study on mechanical properties of carbon/carbon composite structure based on needled technology. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2019 (in Chinese).
邹佳俊. 基于针刺工艺的碳/碳复合材料结构力学性能研究. 硕士学位论文, 南京航空航天大学, 2019.
5 Fan K. Structure and properties of three-dimensional needle-punched carbon felt reinforced resin-based carbon composites. Master’s Thesis, Jiangnan University, China, 2019 (in Chinese).
樊凯. 三维针刺碳毡增强树脂炭复合材料的结构及性能研究. 硕士学位论文, 江南大学, 2019.
6 Xu Y R, Yang M. Journal of Shanghai University, 2014. 20(4), 480 (in Chinese).
许玉荣, 杨敏. 上海大学学报, 2014. 20(4), 480.
7 Zhang H J. Study on meso-mechanics model and oxidation behavior of needled-punched carbon/carbon composites. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2017 (in Chinese).
张海军. 针刺碳/碳复合材料细观力学建模及氧化行为研究. 博士学位论文, 南京航空航天大学, 2017.
8 Deng J H, Wang Y, Li H J, et al. Rare Metal Materials and Engineering, 2018. 47(11), 3420 (in Chinese).
郑金煌, 王毅, 李贺军, 等. 稀有金属材料与工程, 2018. 47(11), 3420.
9 Yu J, Zhou C W, Zhang H J. Composites Science and Technology, 2017. 153, 48
10 Li Y. Fabrication and ablation mechanism of non-woven cloth needled C/C throat composites. Ph. D. Thesis, Northwestern Polytechnical University, China, 2018 (in Chinese)
李艳. 无纬布针剌CC喉衬材料的制备及其烧蚀机制研究. 博士学位论文, 西北工业大学, 2018.
11 Chen T Y. Research on the throat thermal structure of C/C composite materials based on the Jones-Nelson constitutive model. Master’s thesis, Academy of Aerospace Solid Propulsion Technology, China, 2016 (in Chinese).
陈天宇. 基于Jones-Nelson本构模型的C/C复合材料喉衬热结构研究. 硕士学位论文, 航天动力技术研究院, 2016.
12 Li M X. Experimental study on ultra-high temperature tensile mechanical properties of needle-punched C/C composites. Master’s thesis, Harbin Institute of Technology, China, 2020 (in Chinese).
李明旭. 针刺碳/碳复合材料超高温拉伸力学性能试验研究. 硕士学位论文, 哈尔滨工业大学, 2020.
13 Tan Y Y, Yan Y, Li X, et al. Acta Aeronautica et Astronautica Sinica, 2016. 37(12), 3734 (in Chinese).
谭勇洋, 燕瑛, 李欣, 等. 航空学报, 2016. 37(12), 3734.
14 Hashin, Z. Journal of Applied Mechanics, 1980. 47(2), 329.
15 Xia Z H, Zhou C W, Yong Q L. International Journal of Solids ans Structures, 2006. 43(2), 266.
16 Pang S Y, Wang P Y, Hu C L, et al. Journal of Inorganic Materials, 2019. 34(12), 1272 (in Chinese).
庞生洋, 王佩瑶, 胡成龙, 等. 无机材料学报, 2019. 34(12), 1272.
[1] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[2] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[3] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[4] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[5] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[6] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[7] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[8] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[9] 温晋太, 胡怀谷, 安江山, 韩婷, 李欣俞, 胡季帆. 基于机器学习的快淬NdFeB磁体永磁性能分析与预测[J]. 材料导报, 2025, 39(8): 24030158-7.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 刘同旭, 王子君, 张新颖, 陈晓明, 朱广林, 郭策安. 电火花沉积工艺的研究现状和发展趋势[J]. 材料导报, 2025, 39(8): 24030203-9.
[12] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[13] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[14] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[15] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed