Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24010111-7    https://doi.org/10.11896/cldb.24010111
  无机非金属及其复合材料 |
循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究
燕伟1, 李驰1,2,3, 邢渊浩1, 高瑜1,2,3,*
1 内蒙古工业大学土木工程学院,呼和浩特 010051
2 内蒙古工业大学地质技术与岩土工程内蒙古自治区工程研究中心,呼和浩特 010051
3 内蒙古工业大学沙旱地质灾害与岩土工程防御自治区高等学校重点实验室,呼和浩特 010051
Experimental Study on Carbon Fixation of Circulating Fluidized Bed Multi-solid Waste Fly Ash-based Cement Mortar
YAN Wei1, LI Chi1,2,3, XING Yuanhao1, GAO Yu1,2,3,*
1 College of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2 Inner Mongolia Engineering Research Center of Geological Technology and Geotechnical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
3 Key Laboratory of Geological Hazards and Geotechnical Engineering Defense in Sandy and Drought Regions at Universities of Inner Mongolia Autonomous Region, Inner Mongolia University of Technology, Hohhot 010051, China
下载:  全 文 ( PDF ) ( 13325KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高循环流化床(CFB)固体废弃物—“非常规”粉煤灰(CFB-FA)、炉渣(CFB-S)、脱硫石膏(CFB-FGD)利用率,减少水泥建材中的水泥用量,以CFB-FA、CFB-S、CFB-FGD复合并替代40%水泥制备循环流化床多元固废粉煤灰基水泥胶砂,基于碳化养护技术提升其力学性能,并分析固碳效果。结果表明:(1)三种材料以m(CFB-FA)∶m(CFB-S)∶m(CFB-FGD)=3∶2∶1复合并替代40%水泥制备的胶砂试件碳化养护7 d时的抗压强度为43.8 MPa,满足普通水泥胶砂标准养护28 d时的抗压强度要求;(2)对比循环流化床多元固废粉煤灰基水泥胶砂碳化前后物相组成及微观形貌发现,碳化28 d后试件表层和内部有大量CaCO3生成;(3)计算分析得出其自然养护28 d后CO2吸收量为21.8%,较普通水泥胶砂28 d自然碳化吸收量高约10%。该种循环流化床多元固废粉煤灰基水泥胶砂经碳化养护后不仅具备较高力学性能,而且自身固碳能力突出,有一定的工程应用价值并发挥一定的“碳中和”效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
燕伟
李驰
邢渊浩
高瑜
关键词:  固废利用  循环流化床(CFB)  粉煤灰基水泥胶砂  力学性能  固碳    
Abstract: In order to improve the utilization rate of circulating fluidized bed (CFB) solid waste—fly ash (CFB-FA), slag (CFB-S) and desulfurization gypsum (CFB-FGD), and reduce the amount of cement used in cement building materials. In this study, CFB-FA, CFB-S and CFB-FGD were used to replace 40% cement to prepare circulating fluidized bed multi-solid waste fly ash-based cement mortar. The mechanical properties were improved based on carbonization curing technology, and the carbon fixation effect was analyzed. The test results show that:(ⅰ) the compressive strength of the mortar specimen prepared by replacing 40% of cement with the three materials in m(CFB-FA)∶m(CFB-S)∶m(CFB-FGD)=3∶2∶1 is 43.8 MPa with a carbonization curing age of 7 days, which can satisfy the compressive strength requirement of the standard ordinary cement mortar with an oridinary curing age of 28 days. (ⅱ) By comparing the phase composition and microstructure of fly ash-based cement mortar before and after carbonization, a large amount of CaCO3 is generated on the surface and inside of the specimen with a carbonization curing age of 28 days. (ⅲ) The calculation and analysis show that the CO2 absorption with an oridinary curing age of 28 days is 21.8%, which is about 10% higher than the natural carbon absorption of ordinary cement mortar. This circulating fluidized bed multi-solid waste fly ash-based cement mortar not only has high mechanical properties after carbonization curing, but also has outstanding carbon fixation ability, which has certain engineering application value and “carbon neutrality” effect.
Key words:  solid waste utilization    circulating fluidized bed (CFB)    fly ash based cement mortar    mechanical property    fixed carbon
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TU528.064  
  X705  
基金资助: 国家自然科学基金(12262031);内蒙古自治区科技计划(2021GG0344);自治区直属高校基本科研业务费项目(JY20220049;JY20220051;JY20220204)
通讯作者:  *高瑜,博士,内蒙古工业大学副教授,硕士研究生导师,主要从事沙旱区岩土工程灾害及防御方面的科研与教学工作。nmggaoyu@imut.edu.cn   
作者简介:  燕伟,内蒙古工业大学土木工程学院硕士研究生,在李驰教授的指导下进行研究。目前主要研究领域为固废资源利用。
引用本文:    
燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
YAN Wei, LI Chi, XING Yuanhao, GAO Yu. Experimental Study on Carbon Fixation of Circulating Fluidized Bed Multi-solid Waste Fly Ash-based Cement Mortar. Materials Reports, 2025, 39(9): 24010111-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010111  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24010111
1 Zhang X L, Huang X D, Zhang D, et al. Journal of Management World, 2022, 38(1), 35(in Chinese).
张希良, 黄晓丹, 张达, 等. 管理世界, 2022, 38(1), 35.
2 Li Z Y. Inner Mongolia Science Technology and Economy, 2023(15), 3(in Chinese).
李泽艳. 内蒙古科技与经济, 2023(15), 3.
3 Dong Q X, Dong F L, Geng Y, et al. Scientific Management Research, 2022, 40(6), 77(in Chinese).
董秋霞, 董樊丽, 耿涌, 等. 科学管理研究, 2022, 40(6), 77.
4 Bhatt A, Priyadarshini S, Mohanakrishnan A A, et al. Case Studies in Construction Materials, 2019, 11, e00263.
5 Yan P Y. Journal of the Chinese Ceramic Society, 2007(S1), 167(in Chinese).
阎培渝. 硅酸盐学报, 2007(S1), 167.
6 Lu L H, Pan G S, Chen S L, et al. Journal of Shenyang University of Technology, 2009, 31(1), 107(in Chinese).
鲁丽华, 潘桂生, 陈四利, 等. 沈阳工业大学学报, 2009, 31(1), 107.
7 Zhang Z M, Gui L Z, Liao D C, et al. Energy Environmental Protection, 2023, 37(4), 1(in Chinese).
张志明, 桂联政, 廖达琛, 等. 能源环境保护, 2023, 37(4), 1.
8 Li J B, Ji L, Yu H, et al. Acta Scientiae Circumstantiae, 2023, 43(2), 414(in Chinese).
李家碧, 纪龙, 于海, 等. 环境科学学报, 2023, 43(2), 414.
9 Chen J, Zuo X B, Zou Y X, et al. Materials Reports, 2024, 38(22), 161(in Chinese).
陈君, 左晓宝, 邹欲晓, 等. 材料导报, 2024, 38(22), 161.
10 Liu F Q, Guo W D, Chen E Z, et al. Journal of Chongqing University of Technology(Natural Science), 2024, 38(4), 108(in Chinese).
刘富强, 郭伟东, 陈二忠, 等. 重庆理工大学学报(自然科学), 2024, 38(4), 108.
11 Meng X R, Liu Y T, Chen B, et al. Materials Reports, 2024, 38(17), 29(in Chinese).
孟祥瑞, 刘源涛, 陈兵, 等. 材料导报, 2024, 38(17), 29.
12 Chen D H, Qin H Y, Li C, et al. Mining Safety & Environmental Protection, 2024, 51(4), 146(in Chinese).
陈登红, 秦海月, 李超, 等. 矿业安全与环保, 2024, 51(4), 146.
13 Li X Q, Chen Q B, et al. Construction and Building Materials, 2012, 36, 182.
14 Zhang Y, Wu D, Wang Y, et al. Materials, 2023, 17(1), 113.
15 Wang E. Clean Coal Technology, 2016, 22(4), 26 (in Chinese).
王恩. 洁净煤技术, 2016, 22(4), 26.
16 Li R L. Characteristics of cement with ultrafine circulating fluidized bed fly ash. Ph. D. Thesis, China University of Mining and Technology-Beijing, China, 2018(in Chinese).
李端乐. 掺超细循环流化床粉煤灰水泥的特性研究. 博士学位论文, 中国矿业大学(北京), 2018.
17 Zhang W, Gu J R, Zhou X, et al. Journal of Cleaner Production, 2021, 316, 128355.
18 Ren K, Ma S X, Feng Y C, et al. Fuel, 2023, 342, 127843.
19 Mi J F, Ma X F. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2019, 39(9), 2537.
20 Shi C J, Zou Q Y, He F Q. Journal of the Chinese Ceramic Society, 2010, 38(7), 1179(in Chinese).
史才军, 邹庆焱, 何富强. 硅酸盐学报, 2010, 38(7), 1179.
21 Wu S K, Huang T Y, Xie Y, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(6), 1897(in Chinese).
吴胜坤, 黄天勇, 谢岩, 等. 硅酸盐通报, 2023, 42(6), 1897.
22 Cao W D, Yang Q B. Journal of Civil and Environmental Engineering, 2014, 36(4), 92(in Chinese).
曹伟达, 杨全兵. 土木建筑与环境工程, 2014, 36(4), 92.
23 Song J Y, Li Y, He W, et al. Energy Engineering, 2021(3), 31(in Chinese).
宋佳奕, 李严, 何文, 等. 能源工程, 2021(3), 31.
24 Hu D Q, Luo K, Zhang W, et al. Clean Coal Technology, 2023, 29(4), 148(in Chinese).
胡达清, 罗旷, 张威, 等. 洁净煤技术, 2023, 29(4), 148.
25 Wang X R, Guo J M, Zhang Z K, et al. New Building Materials, 2023, 50(7), 163(in Chinese).
王雪儿, 郭继铭, 张泽凯, 等. 新型建筑材料, 2023, 50(7), 163.
26 Li H H. Fly ash of power plant with flue gas desulfurization gypsum and study on mineralization of CO2 sequestration. Master’s Thesis, China University of Mining and Technology, China, 2019(in Chinese).
李海红. 电厂脱硫石膏协同粉煤灰固化CO2研究. 硕士学位论文, 中国矿业大学, 2019.
27 Bai M J. Effect of carbonated fly ash and carbonation curing on strength and permeability of cement mortar. Master’s Thesis, Harbin Institute of Technology, China, 2022(in Chinese).
白蒙杰. 碳化粉煤灰和碳化养护对水泥砂浆强度与渗透性的影响. 硕士学位论文, 哈尔滨工业大学, 2022.
28 Wang Y, Burris L, Hooton R D, et al. Cement and Concrete Composites, 2022(125), 125.
29 Zhang W, Wei C, Liu X M, et al. Materials, 2022, (19), 6774.
30 Jia G H, Wang Y L, Yang F L, et al. Advances in Materlals Science and Engineering, 2022.
31 Su Q F, Zhou Y M, Chen Y R, et al. Journal of the Chinese Ceramic Society, 2016, 44(5), 663(in Chinese).
苏清发, 周勇敏, 陈永瑞, 等. 硅酸盐学报, 2016, 44(5), 663.
32 Wang Y N, Zhao D Q, Cao L H, et al. Journal of Wuhan University of Technology, 2022, 44(10), 6(in Chinese).
王亚楠, 赵德强, 曹亮宏, 等. 武汉理工大学学报, 2022, 44(10), 6.
33 Zhang G J, Li T. Cement Technology, 2022(4), 87(in Chinese).
张冠军, 李涛. 水泥技术, 2022(4), 87.
34 Xuan M Y, Cho H K, Wang X Y, et al. Journal of Building Engineering, 2023, 70, 106336.
35 Zhang Y P, Cui L P, Liu Y F, et al. Chinese Journal of Environmental Engineering, 2021, 15(7), 2344(in Chinese).
张亚朋, 崔龙鹏, 刘艳芳, 等. 环境工程学报, 2021, 15(7), 2344.
36 Qing Y, Shi C J, Zheng K R, et al. Journal of Building Materials, 2008(1), 116(in Chinese).
庆焱, 史才军, 郑克仁, 等. 建筑材料学报, 2008(1), 116.
37 Shao Y X, Rostami, V, He Z, et al. Journal of Materlals in Civil Engineering, 2014, 26(1), 117.
38 Mo L, Zhang F, Deng M. Cement and Concrete Research, 2016, 88, 217.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[5] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[6] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[7] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[8] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[9] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[10] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[11] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[12] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[13] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[14] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[15] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed