Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 23090077-14    https://doi.org/10.11896/cldb.23090077
  高分子与聚合物基复合材料 |
咪唑离子液体基中低温相变材料热物性及储热应用
王少辉1,2, 李琦1,*, 周梅梅1, 杨春云1, 谢会成1, 吴玉庭1, 鹿院卫1
1 北京工业大学“传热与能源利用”北京市重点实验室, 国家能源用户侧储能创新研发中心, 北京 100124
2 青岛海尔空调电子有限公司, 山东 青岛 266103
Thermophysical Properties and Thermal Storage Applications of Imidazole Ionic Liquid Based Medium and Low Temperature Phase Change Materials
WANG Shaohui1,2, LI Qi1,*, ZHOU Meimei1, YANG Chunyun1, XIE Huicheng1, WU Yuting1, LU Yuanwei1
1 Beijing Key Laboratory of Heat Transfer and Energy Utilization, National Energy User-Side Energy Storage Innovation Research and Development Center, Beijing University of Technology, Beijing 100124, China
2 Qingdao Haier Air Conditioner Electric Co.,Ltd., Qingdao 266103, Shandong, China
下载:  全 文 ( PDF ) ( 19338KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 离子液体(ILs)在热物理性质上具有相变温度可调、不可燃性/挥发性低、热稳定性和化学稳定性好等优点,在热能储存领域的应用越来越受到人们的关注。最近,美国国家航空航天局(NASA)利用由功能性离子液体组成的共晶相变材料(PCM)来管理载人航天器的极端空间环境(太阳辐射和极端冷/热),用于未来的深度探索。虽然在离子液体相变过程中储存潜热的概念已为人们所熟知,但迄今为止,该概念在大规模应用方面尚未得到采用,其潜力仍有待进一步挖掘。目前,大多数研究主要集中于离子液体作为传热流体的表现,对其相变储能方面的研究和应用很少。本文的目的是为选择研究良好的离子液体提供必要的信息,并促进该领域的进一步研究。文章首先讨论了传统相变材料的缺陷,然后从化学结构、相变机理和热物理性质等方面对常用的离子液体进行了回顾和总结。最后,详细介绍了离子液体基相变材料的应用,并提出以离子液体(ILs)的结构设计优化、过冷度调控策略、热焓提升路径和制备成本控制为研究切入点,为后续研究提供方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王少辉
李琦
周梅梅
杨春云
谢会成
吴玉庭
鹿院卫
关键词:  相变材料  咪唑离子液体  热物性  相变储能  相变行为    
Abstract: Ionic liquids (ILs) have the advantages of adjustable phase transition temperature, low non-flammability/volatility, good thermal and chemical stability in terms of thermal physical properties, and are increasingly receiving attention in the field of thermal energy storage. Recently, NASA utilized eutectic phase change materials (PCM) composed of functional ionic liquids to manage the extreme space environment (solar ra-diation and extreme cold/hot) of manned spacecraft for future deep exploration. Although the concept of storing latent heat during the phase transition of ionic liquids is well-known, it has not yet been adopted in large-scale applications, and its potential still needs to be further explored. At present, most research focuses on the performance of ionic liquids as heat transfer fluids, with little research and application on their phase change energy storage. The purpose of this article is to provide necessary information for selecting well-researched ionic liquids and promote further research in this field. The article first discusses the defects of traditional phase change materials, and then reviews and summarizes commonly used ionic liquids from the aspects of chemical structure, phase change mechanism, and thermophysical properties. Finally, the application of ionic liquid-based phase change materials was introduced in detail. This paper proposed the structural design optimization of ionic liquids (ILs), undercooling control strategies, enthalpy enhancement pathways, and preparation cost control as research entry points, providing direction for subsequent research.
Key words:  phase change material    imidazole ionic liquid    thermophysical property    phase change energy storage    phase change behavior
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TK02  
基金资助: 国家重点研发计划(2023YFB2406500);国家自然科学基金(52406214)
通讯作者:  *李琦,北京工业大学机械与能源工程学院副教授、博士研究生导师。主要从事多物理耦合场下的流动与传热、跨尺度复合储能材料制备设计和表征。liqi@bjut.edu.cn   
作者简介:  王少辉,北京工业大学机械与能源工程学院研究生,在吴玉庭研究院课题组下进行研究。目前主要研究领域为储能材料的微/纳化及光热改性,现任职于青岛海尔空调电子有限公司。
引用本文:    
王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
WANG Shaohui, LI Qi, ZHOU Meimei, YANG Chunyun, XIE Huicheng, WU Yuting, LU Yuanwei. Thermophysical Properties and Thermal Storage Applications of Imidazole Ionic Liquid Based Medium and Low Temperature Phase Change Materials. Materials Reports, 2025, 39(7): 23090077-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23090077  或          https://www.mater-rep.com/CN/Y2025/V39/I7/23090077
1 Li J D, Chen S J, Wu Y Q, et al. Renewable and Sustainable Energy Reviews, 2021, 137, 110626.
2 Wang Y, Guo C H, Chen X J, et al. China Geology, 2021, 4(4), 720.
3 Cárdenas-Ramírez C, Jaramillo F, Gómez M. Journal of Energy Storage, 2020, 30, 101495.
4 Su W, Darkwa J, Kokogiannakis G. Renewable and Sustainable Energy Reviews, 2015, 48, 373.
5 Tahan Latibari S, Sadrameli S M. Solar Energy, 2018, 170, 1130.
6 Bayrak F, Oztop H F, Selimefendigil F. Energy Conversion and Management, 2020, 212, 112789.
7 Sharma N K, Gaur M K, Malvi C S. Materials Today: Proceedings, 2021, 47, 6759.
8 Du K, Calautit J, Wang Z H, et al. Applied Energy, 2018, 220, 242.
9 Liu G H, Li Q T, Wu J Z, et al. Journal of Energy Storage, 2022, 51, 104435.
10 Pakdel E, Naebe M, Sun L, et al. ACS Applied Materials & Interfaces, 2019, 11(14), 13039.
11 Liu Y, Zheng R W, Li J. Renewable and Sustainable Energy Reviews, 2022, 168, 112783.
12 Pereira da Cunha J, Eames P. Applied Energy, 2016, 177, 227.
13 Hameed G, Ghafoor M A, Yousaf M, et al. Sustainable Energy Technologies and Assessments, 2022, 50, 101808.
14 Eanest Jebasingh B, Valan Arasu A. Materials Today Energy, 2020, 16, 100408.
15 Peng H, Zhang D, Ling X, et al. Energy & Fuels, 2018, 32(7), 7262.
16 Wu L M, Liu Q X, Wang X L, et al. Materials Reports, 2021, 35(Z1), 501 (in Chinese).
吴丽梅, 刘庆欣, 王晓龙, 等. 材料导报, 2021, 35(Z1), 501.
17 Venkatraman V, Evjen S, Knuutila H K, et al. Journal of Molecular Liquids, 2018, 264, 318.
18 Earle M J, Seddon K R. Pure and Applied Chemistry, 2000, 72(7), 1391.
19 Zhou T, Gui C M, Sun L G, et al. Chemical Reviews, 2023, 123(21), 12170.
20 Mezger M, Schröder H, Reichert H, et al. Science, 2008, 322(5900), 424.
21 Wong W P, Kagalkar A, Patel R, et al. Journal of Energy Storage, 2023, 74, 109265.
22 Jiang W F, Li X S, Gao G, et al. Chemical Engineering Journal, 2022, 445, 136767.
23 Wasserscheid P, Keim W. Angewandte Chemie Interational Edition, 2000, 39(21), 3772.
24 Wilkes J S, Zaworotko M J. Journal of the Chemical Society, Chemical Communications, 1992(13), 965.
25 Silva A T, Teixeira C, Marques E F, et al. ChemMedChem, 2021, 16(17), 2604.
26 Zeng S J, Zhang X P, Bai L, et al. Chemical Reviews, 2017, 117(14), 9625.
27 zareiekordshouli F, Lashani-zadehgan A, Darvishi P. International Journal of Greenhouse Gas Control, 2016, 53, 328.
28 Schubert T J S. In: Commercial Applications of Ionic Liquids, Shiflett M. B. , Springer International Publishing, Germany 2020, pp. 191.
29 Gao Y R, Cao J F, Shu Y, et al. Green Chemical Engineering, 2021, 2(4), 368.
30 de Jesus S S, Maciel Filho R. Renewable and Sustainable Energy Reviews, 2022, 157, 112039.
31 Atkin R, Warr G G. The Journal of Physical Chemistry C, 2007, 111(13), 5162.
32 Sadanandhan A M, Khatri P K, Jain S L. Journal of Molecular Liquids, 2019, 295, 111722.
33 Vraneš M, Papović S, Rackov S, et al. The Journal of Chemical Thermodynamics, 2019, 139, 105871.
34 Weingärtner H. Angewandte Chemie International Edition, 2008, 47(4), 654.
35 Sun Y Q, Xu C Y, Igou T, et al. Applied Energy, 2018, 226, 461.
36 Wang H, Xie C X, Yu S T, et al. Chemical Engineering Journal, 2014, 237, 286.
37 Jia X C, Dou W B, Wang X P. Journal of Molecular Liquids, 2022, 364, 120031.
38 Ouyang M, Jiang Q W, Hu K H, et al. Journal of Molecular Liquids, 2022, 360, 119416.
39 Wang J F, Hao Y J, Zhu B J, et al. The Journal of Physical Chemistry B, 2022, 126(4), 985.
40 Abe H, Kishimura H. Journal of Molecular Liquids, 2022, 352, 118695.
41 Rotnicki K, Sterczyńska A, Fojud Z, et al. Journal of Molecular Liquids, 2020, 313, 113535.
42 anji M, Bendová M, Bogdanov M G, et al. Journal of Molecular Liquids, 2019, 292, 111222.
43 Paulechka Y U, Blokhin A V, Kabo G J, et al. Journal of Chemical Thermodynamics, 2007, 39(6), 866.
44 Berthod A, Ruiz-Ángel M J, Carda-Broch S. Journal of Chromatography A, 2018, 1559, 2.
45 Plechkova N V, Seddon K R. Chemical Society Reviews, 2008, 39(17), 123.
46 Welton T. Chemical Reviews, 1999, 99(8), 2071.
47 Wang B S, Qin L, Mu T C, et al. Chemical Reviews, 2017, 117(10), 7113.
48 Zalosh R, Gandhi P, Barowy A. Journal of Loss Prevention in the Process Industries, 2021, 72, 104560.
49 Zhu Y C, Shen H, Ji H, et al. Journal of Loss Prevention in the Process Industries, 2022, 79, 104837.
50 Deng Y Q. Ionic liquids property, preparation and application, China Petrochemical Press, China, 2006, pp. 377 (in Chinese).
邓友全. 离子液体-性质、制备与应用, 中国石化出版社, 2006, pp. 377.
51 Stejfa V, Rohlicek J, Cervinka C. Journal of Chemical Thermodynamics, 2021, 160, 106392.
52 Hasan M, Kozhevnikov I V, Siddiqui M R H, et al. Inorganic Chemistry, 1999, 38(25), 5637.
53 Xu C Q, Cheng Z M. Processes, 2021, 9(2), 337.
54 Liu Y R, Dai Z X, Zhang Z B, et al. Green Energy & Environment, 2021, 6(3), 314.
55 Li C C. Preparation of ionic liquid microcapsules and CO2 adsorption properties. Master's Thesis, China University of Mining and Technology, China, 2019 (in Chinese).
李灿灿. 离子液体微胶囊的制备及其CO2吸附性能. 硕士学位论文, 中国矿业大学. 北京, 2019.
56 Huang S, Wang Z H, Liu S L, et al. Journal of Molecular Liquids, 2020, 309, 113126.
57 Kobzar Y L, Fatyeyeva K. Chemical Engineering Journal, 2021, 425, 131480.
58 Deyab M A, Nessim M I, Haikal A, et al. Journal of Molecular Liquids, 2022, 355, 118984.
59 Rao C J, Venkatesan K A, Tata B V R, et al. Radiation Physics and Chemistry, 2011, 80(5), 643.
60 Qi W, Li M J, Zhao L. Radiation Physics and Chemistry, 2020, 168, 108596.
61 Asha S, Thomas D, Vijayalakshmi K P, et al. Journal of Molecular Liquids, 2021, 333, 115978.
62 Pimienta J A P, Papa G, Sun J, et al. Green Chemistry, 2022, 24(1), 207.
63 Sun J, Konda N V S N M, Parthasarathi R, et al. Green Chemistry, 2017, 19(13), 3152.
64 Papa G, Rodriguez S, George A, et al. Bioresource Technology, 2015, 183, 101.
65 https://www.alibaba.com/product-detail/Ionic-liquids-1-Ethyl-3-methylimidazolium_1600059642454.html?spm=a2700.galleryofferlist.normal_offer.d_title.63b32f249iUfo1
66 Liang X C, Wang J Y, Guo Y K, et al. Bioresource Technology, 2021, 330, 124984.
67 Aparicio S, Atilhan M, Karadas F. Industrial & Engineering Chemistry Research, 2010, 49(20), 9580.
68 Mora S, Neculqueo G, Tapia R A, et al. Journal of Molecular Liquids, 2019, 282, 221.
69 Rooney D, Jacquemin J, Gardas R. In: Ionic liquids, Kirchner B., Springer Berlin Heidelberg, Germany, 2010, pp. 185.
70 Anggraini Y, Sutjahja I M, Kurnia D, et al. Materials Today: Procee-dings, 2021, 44, 3188.
71 Piper S L, Kar M, MacFarlane D R, et al. Green Chemistry, 2022, 24(1), 102.
72 Zhang H, Xu W, Liu J R, et al. Journal of Molecular Liquids, 2019, 282, 474.
73 Valkenburg M E V, Vaughn R L, Williams M, et al. Thermochimica Acta, 2005, 425(1), 181.
74 Chen W J, Zou C J, Li X K. Solar Energy Materials and Solar Cells, 2017, 163, 157.
75 He G D, Fang X M, Xu T, et al. International Journal of Heat and Mass Transfer, 2015, 91, 170.
76 Fabre E, Murshed S M S. Journal of Materials Chemistry A, 2021, 9(29), 15861.
77 Zhu J Q, Bai L G, Chen B H, et al. Chemical Engineering Journal, 2009, 147(1), 58.
78 Ge R, Hardacre C, Nancarrow P, et al. Journal of Chemical & Engineering Data, 2007, 52(5), 1819.
79 Maton C, De Vos N, Stevens C V. Chemical Society Reviews, 2013, 42(13), 5963.
80 Hu Y F, Peng X M. In: Structures and interactions of ionic liquids, Zhang S J, Wang J J, Lu X M, et al., Springer Berlin Heidelberg, Germany, 2014, pp. 141.
81 Boldoo T, Lee M, Kang Y T, et al. Journal of Molecular Liquids, 2021, 341, 117356.
82 Boldoo T, Lee M, Cho H. International Journal of Energy Research, 2022, 46(7), 8891.
83 Zhang Z, Salih A A M, Li M, et al. Energy Fuels, 2014, 28(4), 2802.
84 Ma X C, Liu Y J, Liu H, et al. Solar Energy Materials and Solar Cells, 2018, 188, 73.
85 Liu J L, Yang W G, Li Z, et al. Journal of Molecular Liquids, 2020, 307, 112994.
86 Zhang H, Liu J R, Li M T, et al. Journal of Molecular Liquids, 2018, 269, 738.
87 Efimova A, Hubrig G, Schmidt P. Thermochimica Acta, 2013, 573, 162.
88 Liu J, Wang F X, Zhang L, et al. Renewable Energy, 2014, 63, 519.
89 Keshavarz M H, Pouretedal H R, Saberi E. Process Safety and Environmental Protection, 2018, 116, 333.
90 Urikhinbam S S, Shagolsem L S. Materials Today: Proceedings, 2022, 50, A34.
91 Kurtolu-ztulum S F, Jalal A, Uzun A. Journal of Molecular Liquids, 2022, 363, 119804.
92 Zheng J L, Li Z H, Zhang D S, et al. Journal of Molecular Liquids, 2022, 348, 118407.
93 Belesov A V, Shkaeva N V, Popov M S, et al. International Journal of Molecular Sciences, 2022, 23(18), 13.
94 Venkatraman V, Alsberg B K. Journal of Molecular Liquids, 2016, 223, 60.
95 Knorr M, Icker M, Efimova A, et al. Thermochimic Acta, 2020, 694, 178786.
96 Rezaeian M, Izadyar M, Housaindokht M R. Journal of Molecular Liquids, 2022, 349, 118486.
97 Zaripov Z I, Nakipov R R, Gumerov F M, et al. Journal of Molecular Liquids, 2022, 357, 119091.
98 Fröba A P, Rausch M H, Krzeminski K, et al. International Journal of Thermophysics, 2010, 31(11), 2059.
99 Atashrouz S, Hemmati-Sarapardeh A, Mirshekar H, et al. Journal of Molecular Liquids, 2016, 224, 648.
100 Oster K, Goodrich P, Jacquemin J, et al. The Journal of Chemical Thermodynamics, 2018, 121, 97.
101 Zhang H, Li M T, Yang B L. The Journal of Physical Chemistry C, 2018, 122(5), 2467.
102 Gómez E, Calvar N, Domínguez Á, et al. Fluid Phase Equilibria, 2018, 470, 51.
103 Ge R, Hardacre C, Jacquemin J, et al. Journal of Chemical & Engineering Data, 2008, 53(9), 2148.
104 Fareghi-Alamdari R, Hatefipour R. Thermochimic Acta, 2015, 617, 172.
105 Cui W, Li X X, Li X Y, et al. Applied Energy, 2022, 309, 118465.
106 Zhang H, Xu C L, Fang G Y. Solar Energy Materials and Solar Cells, 2022, 241, 111747.
107 Zhao Y, Zhang X L, Xu X F, et al. Journal of Energy Storage, 2020, 27, 101156.
108 Matsumoto K, Ueda J, Ehara K, et al. International Journal of Refrigeration, 2018, 85, 462.
109 Iwase K, Hikita Y, Yoshikawa I, et al. Journal of Physical Chemistry C, 2022, 126(26), 10668.
110 Tanaka D, Hijiya R, Wakamatsu T. Journal of Crystal Growth, 2021, 573, 126288.
111 Kang T Y, You Y S, Hoptowit R, et al. Journal of Food Engineering, 2021, 300, 110541.
112 Kenisarin M, Mahkamov K. Renewable and Sustainable Energy Reviews, 2007, 11(9), 1913.
113 Rebelo L P N, Lopes J N C, Esperanca J, et al. Accounts of Chemical Research, 2007, 40(11), 1114.
114 Abdelrazik M K, Abdelaziz S E, Hassan M F, et al. Energy Reports, 2022, 8, 11363.
115 Song C S, Lai W C, Schobert H H. Industrial & Engineering Chemistry Research, 1994, 33(3), 548.
116 Das L, Rubbi F, Habib K, et al. Journal of Molecular Liquids, 2021, 336, 116563.
117 Touazi A A, Didaoui S, Khimeche K, et al. Journal of Molecular Liquids, 2021, 327, 114860.
118 Wang J H, Zhai X Y, Zhong Z R, et al. Colloids and Surfaces A: Phy-sicochemical and Engineering Aspects, 2022, 636, 128162.
119 Mert H H, Kekev B, Mert E H, et al. Thermochimica Acta, 2022, 707, 179116.
120 Zheng X, Bao Y Q, Qu D, et al. The Journal of Chemical Thermodynamics, 2021, 162, 106566.
121 Liu J, Ye Z C, Zhang L, et al. Solar Energy Materials and Solar Cells, 2015, 136, 177.
122 Mehrkesh A, Karunanithi A T. Computers & Chemical Engineering, 2016, 93, 402.
123 Cherecheş E I, Bejan D, Ibanescu C, et al. Chemical Engineering Science, 2021, 229, 116140.
124 Wang J W, Tang X D, Qi Z W, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(6), 2248.
125 Das L, Habib K, Saidur R, et al. Nanomaterials (Basel), 2020, 10(7), 2.
126 NASA TechPort. https://techport.nasa.gov/view/90050
127 NASA TechPort. https://techport.nasa.gov/view/93647
128 Wadekar V V. Applied Thermal Engineering, 2017, 111, 1581.
129 Ikutegbe C A, Farid M M. Renewable and Sustainable Energy Reviews, 2020, 131, 110008.
130 Ben Romdhane S, Amamou A, Ben Khalifa R, et al. Journal of Building Engineering, 2020, 32, 101563.
131 Lee H Y, Cai Y F, Velioglu S, et al. Chemistry of Materials, 2017, 29(16), 6947.
132 Wei X J, Yu L P, Wang D H, et al. Green Chemistry, 2008, 10(3), 296.
133 Zhu J T, Huang A B, Ma H B, et al. ACS Applied Materials & Interfaces, 2016, 8(43), 29742.
134 Liu M, Zhang X W, Ma Y G, et al. Energy Conversion and Management, 2018, 161, 243.
135 Kang S, Chung Y G, Kang J H, et al. Journal of Molecular Liquids, 2020, 297, 1.
136 Haywood A, Sherbeck J, Phelan P, et al. Energy Conversion and Ma-nagement, 2012, 58, 26.
137 Kim Y J, Gonzalez M. International Journal of Refrigeration, 2014, 48, 26.
138 Xu R, Xia X M, Wang W, et al. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2020, 591, 124519.
139 Shi H W, Zhang X, Sundmacher K, et al. Green Energy & Environment, 2021, 6(3), 392.
[1] 杨士冠, 陈树权, 王剑, 何俊松, 程林, 翟立军, 刘虹霞, 张艳, 孙志刚. 基于碲化铋的热电制冷器瞬态制冷规律研究[J]. 材料导报, 2025, 39(6): 24020052-16.
[2] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[3] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[4] 成鑫磊, 穆锐, 孙涛, 刘元雪, 胡志德, 蒋昊洋. 固液相变材料的封装制备及在建筑领域的研究进展[J]. 材料导报, 2024, 38(5): 23080048-15.
[5] 江巍雪, 汤新宇, 宋金蔚, 徐祚, 张源. 纳米流体的制备、稳定性及热物性研究进展[J]. 材料导报, 2024, 38(4): 22060208-11.
[6] 赵荣, 韩子夜, 吴飞翔, 刘太奇, 李谭秋. 基于十水硫酸钠的个体防护材料的制备及性能[J]. 材料导报, 2024, 38(3): 22090074-5.
[7] 张维, 张义博, 张琪, 姚继明, 郝尚. PDMS包封CPCM制备三明治结构织物及热性能分析[J]. 材料导报, 2024, 38(19): 23050176-5.
[8] 曾关跃, 高专, 熊玉竹. 多壁碳纳米管负载银/微晶纤维素定型复合相变材料的制备及性能研究[J]. 材料导报, 2023, 37(23): 22040102-6.
[9] 方桂花, 赵茂森, 孙鹏博. 基于棕榈酸-硬脂酸/膨胀石墨定形复合相变储能材料的制备与表征[J]. 材料导报, 2023, 37(20): 22030005-7.
[10] 蒋佳骏, 吴张永, 朱启晨. 水基Ni0.5Zn0.5Fe2O4-SiC二元混合磁流体的稳定性、流变性、热物性与低速润滑性[J]. 材料导报, 2023, 37(20): 22040257-8.
[11] 杨薛明, 胡宗杰, 王炜晨, 刘强, 王帅. 利用蔗糖改性氮化硼提高环氧树脂复合材料的导热性能[J]. 材料导报, 2023, 37(2): 21110039-6.
[12] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[13] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[14] 林伯, 句子涵, 胡定华, 李强. 基于泡沫铜骨架高导热复合相变储热材料的热性能研究[J]. 材料导报, 2022, 36(Z1): 21110168-5.
[15] 张东尧, 白开皓, 李传常. 复合相变织物的制备及应用[J]. 材料导报, 2022, 36(8): 20080153-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed