Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 24010156-8    https://doi.org/10.11896/cldb.24010156
  无机非金属及其复合材料 |
沥青胶浆-集料界面水盐侵蚀损伤与多因素影响规律研究
朱燕丽1, 马川义2, 张吉哲1,*, 范秀泽1, 何亮3,*, 姚占勇1
1 山东大学齐鲁交通学院,济南 250100
2 山东高速集团有限公司,济南 250098
3 重庆交通大学土木工程学院,重庆 400074
Experimental Investigation of Moisture-salt Erosion and Multiple Factors Influence on Asphalt Mortar-Aggregate Interface
ZHU Yanli1, MA Chuanyi2, ZHANG Jizhe1,*, FAN Xiuze1, HE Liang3,*, YAO Zhanyong1
1 School of Qilu Transportation, Shandong University, Jinan 250100, China
2 Shandong Hi-Speed Co., Ltd., Jinan 250098, China
3 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
下载:  全 文 ( PDF ) ( 20913KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 可溶盐长期侵蚀导致沥青胶浆-集料界面黏附性降低,是影响沿海地区沥青路面服役寿命的重要原因。为揭示可溶盐侵蚀的本质特征,本工作以沥青胶浆-集料界面为研究对象,开发了动水压力模拟试验装置,选用玄武岩、石灰岩和花岗岩集料,研究了不同水盐侵蚀工况下沥青胶浆-集料界面的强度衰减规律。采用灰色关联法探明了矿粉、集料的物理化学特性对界面强度的影响规律,并分析了沥青胶浆-集料界面水盐侵蚀损伤的关键影响因素。结果表明,浸水条件下沥青胶浆-集料界面强度逐渐降低,且可溶盐的存在提高了界面强度的衰减速率;动水压力工况下沥青胶浆-集料界面承受水压冲击与泵吸的双重作用,界面强度衰减最为显著。同时,干湿循环和冻融循环导致界面内应力增大,加速界面破坏。界面强度与不同因素的关联度排序为:孔隙体积>表观密度>比表面积>平均粒径>矿粉SiO2含量>集料SiO2含量,其中,孔隙体积、表观密度和比表面积是影响界面强度的关键因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱燕丽
马川义
张吉哲
范秀泽
何亮
姚占勇
关键词:  沥青胶浆  灰色关联  界面  水盐侵蚀  关键因素    
Abstract: Long-term erosion by soluble salts result in a decrease in terms of the asphalt mortar-aggregate interface adhesion, and it is an important factor to the service life of asphalt pavement in coastal areas. In order to reveal the essential principles of the soluble salt erosion, this work focused on the adhesive behavior of asphalt mortar-aggregate interface under different conditions. A type of dynamic moisture pressure simulation test device was developed to study the strength attenuation behavior of asphalt mortar-aggregate interface under different erosion conditions. In addition, the influence of physical and chemical properties of mineral powders and aggregates on the interface strength was revealed by using grey correlation analysis, andthe key factors which dominate the moisture and salt erosion damage of asphalt mortar-aggregate interface were explored. The results indicated that the strength of asphalt mortar-aggregate interface decreases gradually under the water immersion, and the soluble salt promotes the attenuation rate of interface strength. Under dynamic moisture pressure erosion, the interface, subjected to repeated extrusion and pumping action, leads to a significant decrease of adhesive strength. At the same time, the dry-wet and freeze-thaw conditions improved the internal stress of the mortar-aggregate interface which accelerated the interfacial failure. The correlation between interface strength and diffe-rent factors are ranked as follows:void content > apparent density > specific surface area > average particle size > SiO2 content of mineral powder > SiO2 content of aggregate, the pore volume, apparent density and specific surface area are the key factors which affect the interfacial strength.
Key words:  asphalt mortar    gray correlation    interface    water-salt erosion    key factor
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  U414  
基金资助: 国家重点研发计划(2022YFB2603300;2022YFB2603303);国家自然科学基金(52278440)
通讯作者:  *张吉哲,山东大学齐鲁交通学院副教授、硕士研究生导师。主要研究方向为沥青混合料细观力学、新型路面材料设计与表征、废旧路面材料再生利用等方面。
何亮,重庆交通大学土木工程学院教授、博士研究生导师,重庆市巴渝学者青年学者。主要研究方向为沥青路面先进养护方法、可持续性路面材料、沥青材料行为多尺度仿真等。jizhe.zhang@sdu.edu.cn;389288672@qq.com   
作者简介:  朱燕丽,山东大学齐鲁交通学院硕士研究生,在张吉哲教授的指导下进行研究。目前主要研究领域为沥青路面材料黏附性能、沥青路面封层养护材料设计等。
引用本文:    
朱燕丽, 马川义, 张吉哲, 范秀泽, 何亮, 姚占勇. 沥青胶浆-集料界面水盐侵蚀损伤与多因素影响规律研究[J]. 材料导报, 2025, 39(6): 24010156-8.
ZHU Yanli, MA Chuanyi, ZHANG Jizhe, FAN Xiuze, HE Liang, YAO Zhanyong. Experimental Investigation of Moisture-salt Erosion and Multiple Factors Influence on Asphalt Mortar-Aggregate Interface. Materials Reports, 2025, 39(6): 24010156-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010156  或          https://www.mater-rep.com/CN/Y2025/V39/I6/24010156
1 Ma T, Luan Y C, He L, et al. Journal of Traffic and Transportation Engineering, 2023, 23(2), 1 (in Chinese).
马涛, 栾英成, 何亮, 等. 交通运输工程学报, 2023, 23(2), 1.
2 Zhang Q P, Gu X Y, Ding J T, et al. Journal of Traffic and Transportation Engineering, 2021, 21(5), 104 (in Chinese).
张启鹏, 顾兴宇, 丁济同, 等. 交通运输工程学报, 2021, 21(5), 104.
3 Zhou Z G, Li H J, Liu X, et al. Journal of Building Materials, 2020, 23(6), 1430 (in Chinese).
周志刚, 李浩嘉, 刘鑫, 等. 建筑材料学报, 2020, 23(6), 1430.
4 Zhang Q L, Wu D L, Zhang X J, et al. Construction and Building Materials, 2021, 284, 122649.
5 Long Z W, You L Y, Guo N J, et al. Construction and Building Materials, 2023, 367, 130213.
6 Pan P, Wu S P, Xiao Y, et al. Renewable and Sustainable Energy Reviews, 2015, 48, 624.
7 Xiong R, Chu C, Qiao N, et al. Construction and Building Materials, 2019, 201, 121.
8 Chen X, Ren D Y, Tian G S, et al. Construction and Building Materials, 2023, 366, 130177.
9 Cheng Y C, Tao J L, Jiao Y B, et al. Construction and Building Materials, 2016, 118, 268.
10 Lin M, Li P, Nian T F, et al. Journal of Functional Materials, 2020, 51(6), 6150(in Chinese).
林梅, 李萍, 念腾飞, 等. 功能材料, 2020, 51(6), 6150.
11 Lv D, Zheng C F, Qin Y. Construction and Building Materials. 2014, 65, 330.
12 Wu J T. Studies on interaction capability of asphalt and aggregate based on rheological characteristics. Master's Thesis, Harbin Institute of Technology, China, 2009 (in Chinese).
吴建涛. 基于流变特性的沥青与集料交互作用能力的研究. 硕士学位论文, 哈尔滨工业大学, 2009.
13 Xu W Y, Qiu X, Xiao S L, et al. Materials (Basel), 2020, 13(12), 2744.
14 Cala A, Caro S, Lleras M, et al. Construction and Building Materials, 2019, 216, 661.
15 Zhou L, Huang W D, Lyu Q. Journal of Building Materials, 2021, 24(1), 137 (in Chinese).
周璐, 黄卫东, 吕泉. 建筑材料学报, 2021, 24(1), 137.
16 Yin Y P, Chen H X, Kuang D L, et al. Construction and Building Materials, 2017, 146, 231.
17 Xu Y Z, Zheng C F, Feng Y P, et al. Construction and Building Materials, 2018, 183, 95.
18 Han S, Dong S H, Liu M M, et al. Construction and Building Materials, 2019, 227, 116794.
19 Xu G J, Wang H. Science Technology and Engineering, 2016, 112(10), 161.
20 Wang D Y, Guo X L, Tang C. Journal of Building Materials, 2021, 24(3), 624 (in Chinese).
王端宜, 郭秀林, 唐成. 建筑材料学报, 2021, 24(3), 624.
21 Guo Q L, Li G Y, Gao Y, et al. Construction and Building Materials, 2019, 206, 590.
22 Xiao Q Y, Hu H X, Wang L J, et al. Journal of Hebei University of Technology, 2012, 41(4), 64 (in Chinese).
肖庆一, 胡海学, 王丽娟, 等. 河北工业大学学报, 2012, 41(4), 64.
23 Xiao Q Y, Wang Y B, Hu H X, et al. Journal of Wuhan University (Engineering Edition), 2015, 48(2), 187 (in Chinese).
肖庆一, 王玉宝, 胡海学, 等. 武汉大学学报(工学版), 2015, 48(2), 187.
24 Chu C, Liu K P, Li K H, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(12), 3906 (in Chinese).
褚辞, 刘开平, 李科宏, 等. 硅酸盐通报, 2018, 37(12), 3906.
25 Huang X Y, Sha A M, Jiang W, et al. Journal of Chang'An University (Natural Science Edition), 2017, 37(3), 33 (in Chinese).
黄新颜, 沙爱民, 蒋玮, 等. 长安大学学报(自然科学版), 2017, 37(3), 33.
26 Zhang J Z, Wang J, Li Y, et al. Materials Reports, 2022, 36(16), 22040097 (in Chinese).
张吉哲, 王静, 李岩, 等. 材料导报, 2022, 36(16), 22040097.
27 Apeagyei A K, Grenfell J R A, Airey G D. Journal of Materials in Civil Engineering, 2014, 26(8), 04014045.
28 Gao J, Yao Y Q, Wang D, et al. Journal of Traffic and Transportation Engineering, 2023, 23(2), 126 (in Chinese).
高杰, 姚玉权, 王迪, 等. 交通运输工程学报, 2023, 23(2), 126.
[1] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[2] 涂文斌, 胡志华, 邹雨柔, 刘冠鹏, 王善林, 陈玉华. 时效时间和Sb添加对Sn-9Zn-3Bi/Cu焊点界面金属间化合物生长行为的影响[J]. 材料导报, 2025, 39(6): 23120193-6.
[3] 陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
[4] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[5] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[6] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[7] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[8] 崔潮, 李渊, 党颖泽, 王岚, 彭晖. 碱-矿渣-偏高岭土基地聚物与骨料的界面粘结机理[J]. 材料导报, 2025, 39(1): 23110101-8.
[9] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[10] 赵涔凯, 邹杰鑫, 王旻, 李思明, 赵微, 张时林, 滕珏瑾, 王艳皎, 吴明铂, 胡涵, 李亚伟. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 23080132-11.
[11] 魏一帆, 夏会聪, 张佳楠. 钠离子存储器件中界面效应作用机制研究[J]. 材料导报, 2024, 38(8): 23120085-9.
[12] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[13] 张霞, 吴瑛, 袁牧锋, 王春栋. MOFs衍生物在尿素氧化中的研究进展[J]. 材料导报, 2024, 38(6): 23020193-10.
[14] 长俊钢, 陈玉, 何静, 梁奇银, 雷晓波, 蔡芳共, 张勤勇. 热电器件界面性能的研究现状[J]. 材料导报, 2024, 38(6): 22080238-13.
[15] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed