Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120059-7    https://doi.org/10.11896/cldb.24120059
  无机非金属及其复合材料 |
C-S-H晶种对蒸汽养护水泥基材料强度的影响规律与作用机理
马硕1, 蒋义1,2, 高小建1,*
1 哈尔滨工业大学土木工程学院,哈尔滨 150090
2 宁波建工工程集团有限公司,浙江 宁波 315040
The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials
MA Shuo1, JIANG Yi1,2, GAO Xiaojian1,*
1 School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China
2 Ningbo Jiangong Engineering Group Co., Ltd., Ningbo 315040, Zhejiang, China
下载:  全 文 ( PDF ) ( 17917KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 预制混凝土行业普遍采用的蒸汽养护生产工艺存在能耗高和容易导致混凝土开裂等问题,掺入晶种可加速混凝土早期强度发展,减轻蒸汽养护的负面影响。本工作通过流动度和强度测试,系统研究了C-S-H晶种对蒸汽养护水泥基材料早期性能的影响,并结合水化热、XRD和孔结构测试等深入探讨了其作用机理。结果表明:适量C-S-H晶种可提高砂浆流动度56.7%、缩短水泥终凝时间40.1%,加速水泥早期水化,显著提高砂浆的早期强度,12 h抗压强度提高幅度高达125.4%,但是后期会使水泥浆体的凝胶孔增多。蒸汽养护会使C-S-H晶种提高砂浆早期强度的效果有所减弱,随着蒸养温度的升高,减弱幅度会变大,并且在早期时蒸汽养护的早强效果较C-S-H晶种更明显。蒸汽养护使硬化水泥浆体的毛细孔增多,60 ℃蒸汽养护相较于40 ℃蒸汽养护对砂浆后期强度损伤更明显。通过适量掺入C-S-H晶种作为早强剂并降低蒸养温度,可在确保水泥基材料早期强度高速发展的同时,避免高温蒸养对后期强度的过度损伤。该研究为水泥基材料的性能改良和生产工艺优化提供了重要参考价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马硕
蒋义
高小建
关键词:  水泥砂浆  C-S-H晶种  蒸汽养护  强度发展  微观结构    
Abstract: The steam curing process commonly used in the precast concrete industry has some disadvantages such as high energy consumption and easy cracking of concrete. The incorporation of seed crystals can accelerate the development of early strength of concrete and reduce the negative impact of steam curing. In this work, the effects of C-S-H seeds on the early performance of steam-cured cement materials were studied through flowability and strength tests, and then the influence mechanism was explored through hydration heat analysis, XRD characterization, and pore structure evaluation. The results show that the appropriate amount of C-S-H seed crystal can increase the fluidity of mortar by 56.7%, shorten the final setting time of cement by 40.1%, accelerate the early hydration of cement, and significantly improve the early strength of mortar. The 12 h compressive strength increases by 125.4%. However, it may cause an increase of gel pores at later stages. Steam curing reduces the strength-enhancing effects of C-S-H seeds, with higher curing temperatures causing greater reductions. At early stages, steam curing provides stronger early-strength effects than C-S-H seeds. Additionally, steam curing increases capillary pores, with 60 ℃ steam curing causing more damage to later-stage strength than 40 ℃ curing. Incorporating moderate amounts of C-S-H seeds and lowering curing temperatures can promote early strength while minimizing long-term strength loss. The findings offer valuable insights for optimizing the performance and production of cement-based materials.
Key words:  Key words cement mortar    C-S-H seed    steam curing    strength development    microstructure
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TU528.31  
基金资助: 宁波市重点研发计划暨“揭榜挂帅”项目(2023Z101);黑龙江省重点研发计划指导类项目(GZ20220169)
通讯作者:  *高小建,哈尔滨工业大学土木工程学院教授、博士研究生导师。主要从事混凝土流变性与早期性能、超高性能混凝土与功能混凝土、工业固体废弃物的资源化利用等方面的研究。gaoxj@hit.edu.cn   
作者简介:  马硕,哈尔滨工业大学土木工程学院硕士研究生,在高小建教授的指导下进行研究。目前主要从事预制混凝土构件水泥早期水化调控及开裂防控研究。
引用本文:    
马硕, 蒋义, 高小建. C-S-H晶种对蒸汽养护水泥基材料强度的影响规律与作用机理[J]. 材料导报, 2025, 39(24): 24120059-7.
MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials. Materials Reports, 2025, 39(24): 24120059-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120059  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120059
1 Liu S, Li Z, Teng Y, et al. Sustainable Cities and Society, 2022, 77, 103551.
2 Ba M, Qian C, Gun J, et al. Construction and Building Materials, 2011, 25(1), 123.
3 Zeyad A, Tayeh B, Adesina A, et al. Cleaner Materials, 2022, 3, 100042.
4 Cheng Z, Zheng T, Zhou X, et al. Journal of Cleaner Production, 2023, 415, 137888.
5 Wang Y, Lei L, Liu J, et al. Cement and Concrete Composites, 2022, 134, 104762.
6 Tang R, Zhang J, Wang Z, et al. Materials Reports, 2023, 37(9), 109(in Chinese)
唐芮枫, 张佳乐, 王子明, 等. 材料导报, 2023, 37(9), 109.
7 Land G, Stephan D. Cement and Concrete Composites, 2015, 57, 64.
8 Liu B, Zhou H, Pan G, et al. Cement and Concrete Composites, 2023, 139, 105044.
9 Hu S, Xu Z, Ma X, et al. Construction and Building Materials, 2024, 428, 136277.
10 Krstulović R, Dabić P. Cement and Concrete Research, 2000, 30(5), 693.
11 Yan P, Zheng F. Journal of the Chinese Ceramic Society, 2006(5), 555(in Chinese).
阎培渝, 郑峰. 硅酸盐学报, 2006(5), 555.
12 Zhang G, Yang Y, Yang H, et al. Cement and Concrete Composites, 2020, 106, 103452.
13 Wang Y, Shi C, Lei L, et al. Cement and Concrete Composites, 2022, 129, 104485.
14 Zajac M, Hoock S, Stabler C, et al. Cement and Concrete Research, 2017, 101, 13.
15 Kumar R, Bhattacharjee B. Cement and Concrete Research, 2003, 33(1), 155.
16 Zhang C, Cai Y, Kong X, et al. Journal of the Chinese Ceramic Society, 2019, 47(5), 585(in Chinese)
张朝阳, 蔡熠, 孔祥明, 等. 硅酸盐学报, 2019, 47(5), 585.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[3] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[4] 宋国锋, 张师伟, 刘俊, 刘建坤, 梁思明. 硫铝酸盐膨胀剂对水泥砂浆早期徐变与内部湿度的影响[J]. 材料导报, 2025, 39(4): 23100111-7.
[5] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[6] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[7] 翟子权, 段鸿莺, 吕颖慧, 张西文, 赵鹏, 张云升. 北京故宫神厨屋面灰背和夹垄灰浆成分及微结构对比分析[J]. 材料导报, 2025, 39(24): 24090214-10.
[8] 邵杰, 陈筝, 刘舒介, 罗淑见. 水热处理废弃咖啡渣对混凝土性能的影响及其机理研究[J]. 材料导报, 2025, 39(24): 24110107-7.
[9] 杨佳奇, 李海军, 李皓云, 廉杰, 王小维, 宋祎鹏, 张瑞娟, 杨帆, 杨吉军. 辐照对AlxCrMoNbZr高熵合金涂层微观结构和力学性能的影响研究[J]. 材料导报, 2025, 39(24): 24120102-8.
[10] 龙海洋, 王涛, 曹俊, 李艳辉, 马汝成, 李晓硕, 王博超, 刘志存, 方姣. LiSbO3掺杂对KNN基无铅压电陶瓷结构及压电性能的影响[J]. 材料导报, 2025, 39(23): 24110207-9.
[11] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[12] 刘蕾, 姚勇, 张玲玲, 唐子歆, 仇为波. 风化软岩弃渣在道路基层的应用研究[J]. 材料导报, 2025, 39(22): 25020177-9.
[13] 乔立捷, 袁帅, 孟一凡, 邱质彬, 薛召露, 张振亚. 热障涂层的高温氧化及水氧腐蚀行为研究[J]. 材料导报, 2025, 39(22): 24100107-6.
[14] 鞠鹏, 雷宝锋, 姬语洋, 樊恒辉. 聚丙烯纤维对流态固化土流变及力学性能的影响[J]. 材料导报, 2025, 39(20): 24080171-8.
[15] 张萌, 窦智, 王泽平, 温勇. 碱激发矿渣/粉煤灰沙漠砂混凝土的基本力学性能及微观特性[J]. 材料导报, 2025, 39(18): 24040241-11.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed