Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120042-8    https://doi.org/10.11896/cldb.24120042
  无机非金属及其复合材料 |
基于SR-SSA-SVR的铁尾矿砂混凝土抗压强度预测
范明辉1, 李薇1, 焦宇浩1, 任文渊1,*, 罗滔1,2, 赵丁筱烨1
1 西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100
2 西京学院陕西省混凝土结构安全与耐久性重点实验室,西安 710123
Compressive Strength Prediction of Iron Tailing Sand Concrete Based on SR-SSA-SVR
FAN Minghui1, LI Wei1, JIAO Yuhao1, REN Wenyuan1,*, LUO Tao1,2, ZHAO Dingxiaoye1
1 College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
2 Shanxi Key Laboratory of Safety and Durability of Concrete Structures, Xijing University, Xi’an 710123, China
下载:  全 文 ( PDF ) ( 9645KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了准确、可靠地预测铁尾矿砂混凝土的抗压强度,通过逐步回归(SR)筛选特征变量,利用麻雀搜索算法(SSA)优化支持向量回归(SVR),建立SR-SSA-SVR的铁尾矿砂混凝土抗压强度预测模型。采用单一指标对筛选变量前后的模型性能进行评价;通过对比SVR、反向传播神经网络(BPNN)、SSA-BPNN预测结果验证所提模型的精度;引入熵权-TOPSIS方法提出综合指标,评价不同输入变量下的多模型性能。结果表明:利用逐步回归剔除高相关系数变量可以降低SSA-SVR模型的复杂度,提高模型的泛化能力;相比其他模型,SR-SSA-SVR模型具有更小的误差和更高的精度;天然细骨料对铁尾矿砂混凝土抗压强度的影响最小,进而验证了SR-SSA-SVR模型的准确性和高效性,为铁尾矿砂混凝土的配合比优化设计提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范明辉
李薇
焦宇浩
任文渊
罗滔
赵丁筱烨
关键词:  铁尾矿砂  混凝土  抗压强度预测  逐步回归  支持向量回归  熵权-TOPSIS    
Abstract: In order to accurately and reliably predict the compressive strength of iron tailing sand concrete, the compressive strength prediction model of iron tailing sand concrete with SR-SSA-SVR was proposed, which uses the method of stepwise regression (SR) to screen the characteristic variables, and uses the sparrow search algorithm (SSA) to optimise the support vector regression (SVR). A single index was used to evaluate the model performance before and after screening variables;and the accuracy of the proposed model was verified by comparing the prediction results of SVR, back-propagation neural network (BPNN), and SSA-BPNN. The entropy weight-TOPSIS method was introduced to propose a comprehensive index for evaluating the performance of the multi-model under different input variables. The results show that stepwise regression can eliminate high correlation coefficient variables, reduce the complexity of the SSA-SVR model, and improve the generalisation ability of the model. Compared with other models, the SR-SSA-SVR model has lower error and higher accuracy. The natural fine aggregate has the least effect on the compressive strength of concrete with iron tailing sand. The proposed model provides a new idea for the optimal design of the mix ratio of iron tailing sand concrete.
Key words:  iron tailing sands    concrete    compressive strength prediction    stepwise regression    support vector regression    entropy weight-TOPSIS
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TU528  
基金资助: 国家自然科学基金青年科学项目(51909223);中国水利水电科学研究院水利部白蚁防治重点实验室开放研究基金(IWHR-2024TE006);陕西省混凝土结构安全与耐久性重点实验室开放基金(SZ02402)
通讯作者:  *任文渊,西北农林科技大学水利与建筑工程学院教授、硕士研究生导师。主要从事混凝土细观断裂与有限元数值仿真、海绵城市透水路面结构与材料、尾矿固废综合利用等方面的研究。wenyuange304@nwsuaf.edu.cn   
作者简介:  范明辉,西北农林科技大学水利与建筑工程学院硕士研究生,在任文渊副教授的指导下进行研究。目前主要研究领域为尾矿资源化利用。
引用本文:    
范明辉, 李薇, 焦宇浩, 任文渊, 罗滔, 赵丁筱烨. 基于SR-SSA-SVR的铁尾矿砂混凝土抗压强度预测[J]. 材料导报, 2025, 39(24): 24120042-8.
FAN Minghui, LI Wei, JIAO Yuhao, REN Wenyuan, LUO Tao, ZHAO Dingxiaoye. Compressive Strength Prediction of Iron Tailing Sand Concrete Based on SR-SSA-SVR. Materials Reports, 2025, 39(24): 24120042-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120042  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120042
1 Chen X Y. Experimental study on the mechanical properties of the tailing sand green concrete members. Master’s Thesis, Wuhan University of Technology, China, 2017(in Chinese).
陈秀云. 铁尾矿砂绿色混凝土构件受力性能试验研究. 硕士学位论文, 武汉理工大学, 2017.
2 Ma W H, Meng Q J, Kang H Z, et al. Journal of Building Structures, 2021, 42(S1), 322(in Chinese).
马卫华, 孟庆娟, 康洪震, 等. 建筑结构学报, 2021, 42(S1), 322.
3 Lu C, Chen H Y, Fu L J, et al. Materials Reports, 2021, 35(5), 5011in Chinese).
路畅, 陈洪运, 傅梁杰, 等. 材料导报, 2021, 35(5), 5011.
4 Li Z Y, Chen F. Journal of Functional Materials, 2023, 54(6), 6230(in Chinese).
李致远, 陈峰. 功能材料, 2023, 54(6), 6230.
5 Zhang Y Z, Zhou M, Liu K. Non-Metallic Mines, 2016, 39(6), 57(in Chinese).
张玉琢, 周梅, 刘凯. 非金属矿, 2016, 39(6), 57.
6 Piao C A, Wang D M, Zhang L R, et al. Bulletin of the Chinese Ceramic Society, 2016, 35(10), 3295(in Chinese).
朴春爱, 王栋民, 张力冉, 等. 硅酸盐通报, 2016, 35(10), 3295.
7 Lv Z, Jiang A N, Liang B. Construction and Building Materials, 2022, 327, 126930.
8 Fu C, Li X, Han J, et al. Journal of Sensors, 2023, 2023(1), 5525182.
9 Lang W L, Xie Q, Chen W W, et al. Case Studies in Construction Materials, 2024, 21, e03839.
10 Wei L G, Huang L, Zeng L H. Materials Reports, 2024, 38(9), 160(in Chinese).
魏令港, 黄靓, 曾令宏. 材料导报, 2024, 38(9), 160.
11 Gong H, Guo J, Mu Y, et al. Sustainability, 2024, 16(2), 832.
12 Cao F, Zhou Y, Wang C X, et al. Ulletin of the Chinese Ceramic Society, 2021, 40(1), 90(in Chinese).
曹斐, 周彧, 王春晓, 任梦宇, 周峰. 硅酸盐通报, 2021, 40(1), 90.
13 Wei Y T. Prediction of concrete compressive strength and concrete mix design based on SVR-GA. Master’s Thesis, Tsinghua University, China, 2022(in Chinese).
魏宇桐. 基于SVR-GA的混凝土抗压强度预测与配合比设计. 硕士学位论文, 清华大学, 2022.
14 Zhu W, Shi C F, Li N. Journal of China & Foreign Highway, 2014, 34(1), 311(in Chinese).
朱伟, 石超峰, 李楠. 中外公路, 2014, 34(1), 311.
15 Gilan S S, Jovein H B, Ramezanianpour A A. Construction and Building Materials, 2012, 34, 321.
16 Lv X, Mu X D, Zhang J, et al. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8), 1712(in Chinese).
吕鑫, 慕晓冬, 张钧, 等. 北京航空航天大学学报, 2021, 47(8), 1712.
17 Yao T C, Zhang K D, Yang Y, et al. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2024, 40(9), 59(in Chinese).
姚田成, 张宽地, 杨洋, 等. 农业工程学报, 2024, 40(9), 59.
18 Meng Z J, Liu H Y, An X F, et al. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2), 231(in Chinese).
孟志军, 刘淮玉, 安晓飞, 等. 农业机械学报, 2022, 53(2), 231.
19 Zhou Q. Study on gelation characteristics of micropowder in lron tailings and its concrete preparation. Master’s Thesis, Fuzhou University, China, 2017(in Chinese).
周泉. 铁尾矿微粉胶凝特性及其混凝土制备研究. 硕士学位论文, 福州大学, 2017.
20 He X X. Study on the mix design and performance of mechanized sand concrete with iron tailings. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China, 2023(in Chinese).
贺鑫鑫. 铁尾矿机制砂混凝土配合比设计及性能研究. 硕士学位论文, 北京建筑大学, 2023.
21 Xu Y Z. Preparation and mechanical properties of high volume iron tailings sand concrete. Master’s Thesis, Shenyang University of Technology, China, 2019(in Chinese).
徐永泽. 高掺量铁尾矿砂混凝土的制备及力学性能研究. 硕士学位论文, 沈阳工业大学, 2019.
22 Wang N. Experimental study on durability of concrete with extra fine iron tailings. Master’s Thesis, Shenyang University of Technology, China, 2020(in Chinese).
王宁. 掺特细铁尾矿砂混凝土的耐久性试验研究. 硕士学位论文, 沈阳工业大学, 2020.
23 Li N, Jiao Q Y Fan R, et al. Computer Simulation, 2021, 38(9), 57(in Chinese).
李楠, 焦庆宇, 樊瑞, 等. 计算机仿真, 2021, 38(9), 57.
24 Liu M C, Xue H R, Liu J P, et al. Spectroscopy and Spectral Analysis, 2022, 42(5), 1601(in Chinese).
刘美辰, 薛河儒, 刘江平, 等. 光谱学与光谱分析, 2022, 42(5), 1601.
25 Li G D, Shen G Y, Li S S et al. Journal of Basic Science and Engineering, 2023, 31(4), 843(in Chinese).
李国栋, 沈桂莹, 李珊珊, 等. 应用基础与工程科学学报, 2023, 31(4), 843.
26 Xue J K, Shen B. Systems Science & Control Engineering, 2020, 8(1), 22.
27 Wang P H, Qiao H X, Feng Q, et al. Journal of Building Materials, 2024, 27(3), 189(in Chinese).
王鹏辉, 乔宏霞, 冯琼, 等. 建筑材料学报, 2024, 27(3), 189.
28 Wei L G, Huang L, Zeng L H. Materials Reports, 2024, 38(9), 160(in Chinese).
魏令港, 黄靓, 曾令宏. 材料导报, 2024, 38(9), 160.
29 Chai T, Draxler R R. Eoscientific Model Development, 2014, 7(3), 1247.
30 Zhang D, Zhang B, Zhang R. Journal of Huazhong University of Science and Technology(Nature Science Edition), 2022, 50(10), 136(in Chinese).
张东, 张彬, 张瑞, 等. 华中科技大学学报(自然科学版), 2022, 50(10), 136.
31 Li J, Ren W, Zhang A, et al. Buildings, 2023, 13(1), 149.
[1] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[2] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[3] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[4] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[5] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[6] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[7] 杜刚, 李亮, 王子晨, 吴俊, 杜修力. 碳纤维混凝土高温冷却后动态压缩性能试验研究[J]. 材料导报, 2025, 39(6): 24010268-6.
[8] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[9] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[10] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[11] 潘杜, 牛荻涛, 罗大明. 海水海砂混凝土中低合金钢筋钝化膜结构及厚度预测模型[J]. 材料导报, 2025, 39(6): 23120173-8.
[12] 牛荻涛, 杨瑞希, 吕瑶, 孙杏杏, 曹志远, 吴鸿渠. SO2和CO2共同作用下混凝土性能劣化研究[J]. 材料导报, 2025, 39(5): 23120166-7.
[13] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[14] 翟慕赛, 刘可凡, 陶怡然, 陈建兵. 百年混凝土桥梁方形带肋钢筋力学性能研究[J]. 材料导报, 2025, 39(5): 24090049-6.
[15] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[1] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[2] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[3] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[4] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[8] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed