Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120040-9    https://doi.org/10.11896/cldb.24120040
  无机非金属及其复合材料 |
硼掺杂石墨烯作为锂离子电池负极材料的第一性原理计算研究
张凯铭1, 李春雨1, 孙洪茹1, 韩梓健1, 张旭2,*, 魏爽2,3, 路旭格2, 董伟2, 沈丁2, 杨绍斌2
1 黑龙江龙兴国际资源开发集团有限公司,哈尔滨 150036
2 辽宁工程技术大学材料科学与工程学院,辽宁 阜新 123000
3 辽宁工程技术大学矿业学院,辽宁 阜新 123000
First-principles Study of Boron-doped Graphene as Anode Material for Lithium-ion Batteries
ZHANG Kaiming1, LI Chunyu1, SUN Hongru1, HAN Zijian1, ZHANG Xu2,*, WEI Shuang2,3,LU Xuge2, DONG Wei2, SHEN Ding2, YANG Shaobin2
1 Heilongjiang Longxing International Resources Development Company Limited, Harbin 150036, China
2 College of Materials Science & Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
3 College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China
下载:  全 文 ( PDF ) ( 18921KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯作为锂离子电池(LIBs)负极材料的潜在材料,通过元素掺杂可以有效提高其性能。采用基于密度泛函理论(DFT)的第一性原理计算方法对不同硼(B)掺杂量的石墨烯(CmBn)上吸附锂(Li)后的结构、吸附情况、扩散行为、储锂容量等性质进行计算和分析,结果表明掺杂后石墨烯仍保持平面结构,说明其结构稳定性良好。吸附性质计算表明随着B掺杂浓度增大,CmBn吸附Li后的结构(LiCmBn)变形较大,吸附能整体呈现逐渐提高的趋势,且均小于锂原子的内聚能(-2.74 eV),说明B掺杂可以抑制锂枝晶的出现。差分电荷密度和电子局域函数证明CmBn对Li具有强相互作用。对B掺杂浓度为25.00%的C24B8吸附Li后进行第一性原理分子动力学(AIMD)模拟,结果表明C24B8材料具有高热力学稳定性。态密度计算表明硼掺杂向石墨烯中引入空穴,材料导电性增强,CmBn在吸附Li原子后仍能保持优异的导电性能。扩散性质计算表明B掺杂浓度为2.08%时,材料的倍率性能有所提高。通过开路电压及理论容量的计算表明在B原子浓度为12.50%时,反应可逆,B元素附近理论容量可达到211.59 mAh/g,说明掺杂浓度较为合适。该系统研究为硼掺杂石墨烯作为LIBs负极材料的掺杂浓度及抑制锂枝晶生长等方面提供了重要的理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张凯铭
李春雨
孙洪茹
韩梓健
张旭
魏爽
路旭格
董伟
沈丁
杨绍斌
关键词:  硼掺杂石墨烯  锂离子电池  第一性原理计算  负极材料    
Abstract: Graphene, as a potential material for anode materials in lithium-ion batteries (LIBs), can effectively enhance its performance through element doping. In this work, we employ first-principles calculations based on density functional theory (DFT) to analyze the structures, adsorption conditions, diffusion behaviors, and lithium storage capacities of graphene (CmBn) with varying boron (B) doping levels after the adsorption of lithium (Li). The results indicate that the doped graphene maintains its planar structure, demonstrating good structural stability. Adsorption pro-perty calculations reveal that as the B doping concentration increases, the structure (LiCmBn) of CmBn after the adsorption of Li undergoes signi-ficant deformation, and the overall adsorption energy shows a gradual increasing trend, yet remains below the cohesive energy of lithium atoms (-2.74 eV), suggesting that B doping can inhibit the emergence of lithium dendrites. Different charge density and electron localization function demonstrate a strong interaction between CmBn and Li. Ab initio molecular dynamics (AIMD) simulations on C24B8 with a B doping concentration of 25.00% after the adsorption of Li indicate that the C24B8 material exhibits high thermodynamic stability. Density of states calculations reveal that boron doping introduces holes into graphene, enhancing the material’s conductivity, and CmBn maintains excellent conductivity even after the adsorption of Li atoms. Diffusion property calculations indicate that the material’s rate performance improves when the B doping concentration is 2.08%. Calculations of open-circuit voltage and theoretical capacity reveal that the reaction is reversible when the B atom concentration is 12.50%, and the theoretical capacity near the B element can reach 211.59 mAh/g, indicating a suitable doping concentration. This systematic study provides important theoretical guidance for the doping concentration and inhibition of lithium dendrite growth in boron-doped graphene as anode materials for LIBs.
Key words:  boron-doped graphene    lithium-ion battery    first-principles calculation    anode material
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TB321  
基金资助: 黑龙江省重点研发计划“揭榜挂帅”项目 (2023ZXJ05A01);辽宁省高等学校基本科研项目(JYTQN2023209)
通讯作者:  *张旭,博士,辽宁工程技术大学讲师、硕士研究生导师。目前主要从事矿物材料多尺度计算、矿物新能源材料等方面的研究。894866779@qq.com   
作者简介:  张凯铭,硕士,目前主要研究领域为锂离子电池电极材料。
引用本文:    
张凯铭, 李春雨, 孙洪茹, 韩梓健, 张旭, 魏爽, 路旭格, 董伟, 沈丁, 杨绍斌. 硼掺杂石墨烯作为锂离子电池负极材料的第一性原理计算研究[J]. 材料导报, 2025, 39(24): 24120040-9.
ZHANG Kaiming, LI Chunyu, SUN Hongru, HAN Zijian, ZHANG Xu, WEI Shuang,LU Xuge, DONG Wei, SHEN Ding, YANG Shaobin. First-principles Study of Boron-doped Graphene as Anode Material for Lithium-ion Batteries. Materials Reports, 2025, 39(24): 24120040-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120040  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120040
1 Liu B, Zhang Y, Wang Z, et al. Advanced Materials, 2020, 32(34), 2003657.
2 Wang W P, Zhang J, Yin Y X, et al. Advanced Materials, 2020, 32(23), 2000302.
3 Ren W, Zheng Y, Cui Z, et al. Energy Storage Materials, 2021, 35, 157.
4 Li Z, He Q, Zhou C, et al. Energy Storage Materials, 2021, 37, 40.
5 Aslam M K, Niu Y, Hussain T, et al. Nano Energy, 2021, 86, 106142.
6 Liang J, Chen Q Y, Liao X B, et al. Angewandte Chemie-International Edition, 2020, 59(16), 6561.
7 Wei H, Wang H, Li A, et al. Journal of Alloys and Compounds, 2020, 820, 153111.
8 Fu W, Zhao E, Ma R, et al. Advanced Energy Materials, 2020, 10(2), 1902993.
9 Murugadoss V, Lin J, Liu H, et al. Nanoscale, 2019, 11(38), 17579.
10 Zhang X J, Ma F, Srinivas K, et al. Energy Storage Materials, 2022, 45, 656.
11 Huang X, Yin R, Qian L, et al. Ceramics International, 2019, 45(14), 17784.
12 Qian Y, Yuan Y, Wang H, et al. Journal of Materials Chemistry A, 2018, 6(48), 24676.
13 Chen Y, Dai G, Gao Q. ACS Sustainable Chemistry & Engineering, 2019, 7(16), 14064.
14 Guo R, Li Q, Zheng Y, et al. Materials Today, 2019, 30, 26.
15 Kumar R, Macedo W C, Singh R K, et al. ACS Applied Nano Materials, 2019, 2(7), 4626.
16 Zhang B, Wu C, Bao Y, et al. Journal of Colloid and Interface Science, 2025, 677, 151.
17 Guo M, Li X, Liu X, et al. ACS Applied Nano Materials, 2022, 5(11), 16553.
18 Chen J, Yu T, Zheng G, et al. International Journal of Hydrogen Energy, 2024, 82, 1171.
19 Yin S, Zhang X, Liu D, et al. Physical Chemistry Chemical Physics, 2024, 26(4), 3415.
20 Ju D, Li Y, Han B, et al. Diamond and Related Materials, 2024, 149, 111656.
21 Samawi K A, Mohammed B A, Salman E A A, et al. Physical Chemistry Chemical Physics, 2024, 26(12), 9284.
22 Ma X, Xu C, Yang Y, et al. Materials Reports:Energy, 2024, 4(3), 100279.
23 Bajorowicz B, Wilamowska-Zawłocka M, Lisowski W, et al. Applied Surface Science, 2024, 655, 159702.
24 Li L, Li H, Liu L, et al. Nanomaterials, 2024, 14(11), 937.
25 Liang K, Wu T, Misra S, et al. Advanced Science, 2024, 11(31), 2402708.
26 Kumar R, Sahoo S, Joanni E, et al. Materials Today, 2020, 39, 47.
27 Ren X, Zhu J, Du F, et al. The Journal of Physical Chemistry C, 2014, 118(39), 22412.
28 Zhao P, Qin X, Li H, et al. Journal of Solid State Chemistry, 2021, 302, 122418.
29 Zhou L, Hou Z F, Gao B, et al. Journal of Materials Chemistry A, 2016, 4(35), 13407.
30 Kresse G, Joubert D. Physical Review B, 1999, 59(3), 1758.
31 Mattsson A E, Schultz P A, Desjarlais M P, et al. Modelling and Simulation in Materials Science and Engineering, 2004, 13(1), R1.
32 Vanderbilt D. Physical Review B, 1990, 41(11), 7892.
33 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
34 Perdew J P, Parr R G, Levy M, et al. Physical Review Letters, 1982, 49(23), 1691.
35 Wang F D, Wang F, Zhang N N, et al. Chemical Physics Letters, 2013, 555, 212.
36 Wang F, Zhang T, Hou X, et al. International Journal of Hydrogen Energy, 2017, 42(15), 10099.
37 Grimme S. Journal of Computational Chemistry, 2006, 27(15), 1787.
38 Halgren T A, Lipscomb W N. Chemical Physics Letters, 1977, 49(2), 225.
39 He X, Zhu Y, Epstein A, et al. npj Computational Materials, 2018, 4(1), 18.
40 Nosé S. The Journal of Chemical Physics, 1984, 81(1), 511.
41 Hoover W G. Physical Review A, 1985, 31(3), 1695.
42 Ganguly G, Halder D, Banerjee A, et al. ACS Sustainable Chemistry & Engineering, 2019, 7, 9808.
43 Chang C, Yin S, Xu J. RSC Advances, 2020, 10(23), 13662.
44 Qi J, Li Q, Huang M, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 683, 132998.
45 Wang C Z, Bo T, Lan J H, et al. Chemical Communications, 2018, 54(18), 2248.
46 Li Z, Cao Y, Li G, et al. Electrochimica Acta, 2021, 366, 137466.
47 Uthaisar C, Barone V, Peralta J E. Journal of Applied Physics, 2009, 106(11), 113715.
48 Sangavi S, Santhanamoorthi N, Vijayakumar S. Molecular Physics, 2019, 117(4), 462.
49 Tang S, Liu C, Sun W, et al. Physical Chemistry Chemical Physics, 2021, 23, 26981.
50 Tang S, Liu C, Sun W, et al. Nanoscale, 2021, 13(38), 16316.
51 Partoens B, Peeters F M. Physical Review B, 2006, 74(7), 075404.
52 Chen J J, Zhang R D, Chen Y. Chemical Journal of Chinese Universities, 2024, 45(7), 152 (in Chinese).
陈俊杰, 张瑞丹, 陈越. 高等学校化学学报, 2024, 45(7), 152.
53 Shen Y, Liu J, Li X, et al. ACS Applied Materials & Interfaces, 2019, 11(39), 35661.
54 Mortazavi B, Shahrokhi M, Zhuang X, et al. Journal of Materials Che-mistry A, 2018, 6(23), 11022.
55 Cai M Y, Tang C M, Zhang Q Y. Acta Physica Sinica, 2019, 68(21), 61 (in Chinese).
蔡梦圆, 唐春梅, 张秋月. 物理学报, 2019, 68(21), 61.
56 Song J, Jiang M J, Shang W H, et al. Energy Storage Science and Technology, 2024, 13(4), 1293 (in Chinese).
宋俊, 蒋明杰, 尚文华, 等. 储能科学与技术, 2024, 13(4), 1293.
[1] 姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
[2] 张文浩, 韩文佳, 陈安祥, 周世晋, 王晓龙, 陈仪玮, 李霞. 生物质基硬碳钠离子电池负极材料预处理研究进展[J]. 材料导报, 2025, 39(9): 24030195-12.
[3] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[4] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[5] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[6] 吴慧淋, 张宇飞, 董权, 张静. 基于第一性原理的间隙原子掺杂MgAlLiSbAg轻质高熵合金的结构和
性能研究
[J]. 材料导报, 2025, 39(22): 24090168-7.
[7] 付举, 马星阳, 谢雯娜, 吕鹏飞, 智茂永. 锂离子电池硅基负极膨胀机理及改性研究进展[J]. 材料导报, 2025, 39(18): 24070028-8.
[8] 刘冬旭, 宋皓炜, 刘鹏, 姚青荣, 王仲民, 邓健秋. 天然生物聚合物衍生硬炭材料的微观结构与储钠性能[J]. 材料导报, 2025, 39(16): 24070125-6.
[9] 杨涵, 刘宁豪, 高强, 何轩, 杨广丰. 基于NSGA-Ⅱ的双迷宫流道液冷板结构优化设计[J]. 材料导报, 2025, 39(15): 24070051-7.
[10] 张笑儒, 宋静, 罗来马, 孙宏骞, 赵聪聪, 田硕, 田亮亮, 吴玉程. 固态锂离子电池电解质材料应用性能的研究进展[J]. 材料导报, 2025, 39(13): 24060166-20.
[11] 张玲玲, 郏永强, 顾星宸, 张子豪, 巴志新. 锂离子电池正极集流体用涂碳铝箔的研究进展[J]. 材料导报, 2025, 39(12): 24030022-6.
[12] 李龙飞, 郑永泉, 万旺军, 徐至宏, 汪清利, 王琛, 贺馨平, 夏新辉, 夏阳. 锂离子电池缺陷检测技术及失效机理分析研究进展[J]. 材料导报, 2025, 39(11): 24100016-9.
[13] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[14] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[15] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[4] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[8] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed