Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120008-9    https://doi.org/10.11896/cldb.24120008
  高分子与聚合物基复合材料 |
ZSM-22在烷烃加氢异构反应中应用的研究进展
王智莹1,2, 伞晓广1,*, 苗昱露1,2, 董磊2
1 沈阳化工大学化学工程学院,沈阳 110142
2 中国科学院大学大连化学物理研究所,辽宁 大连 116023
Research Progress on Applying ZSM-22 to Alkane Hydroisomerization
WANG Zhiying1,2, SAN Xiaoguang1,*, MIAO Yulu1,2, DONG Lei2
1 College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2 Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences, Dalian 116023, Liaoning, China
下载:  全 文 ( PDF ) ( 14673KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以分子筛为载体负载贵金属的双功能催化剂一直是烷烃加氢异构反应的主要研究对象。ZSM-22作为一种单维孔道的分子筛载体,具有更符合异构反应机理的择形选择性,但特殊的晶体形貌导致分子扩散严重受限。本文简述了烷烃加氢异构反应的扩散路径及异构机理,总结了近年来在理想型ZSM-22载体制备方面的探索与研究;从纳米晶体的合成、金属掺杂以及简单的分子筛后处理等方面阐述了载体理化性质的改变对催化剂性能的影响,总结了分子筛载体的调变规律以及在制备过程中受到的限制;深入阐述了分子筛性能调变与烷烃加氢异构反应结果之间的构效关系;同时,展望了催化剂载体后处理提质增效的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王智莹
伞晓广
苗昱露
董磊
关键词:  烷烃  加氢异构  ZSM-22分子筛  后处理  反应机理    
Abstract: The bifunctional catalysts with zeolites as supports have long been the main research topic in the hydroisomerization of alkanes. ZSM-22, as a type of single dimensional zeolite, has demonstrated excellent shape selectivity in the isomerization reaction. However, the crystal morphology-induced diffusion limitation of ZSM-22 is an unavoidable obstacle to its application. This review briefly describes the diffusion and hydroisomerization mechanism of alkanes, and outlines the efforts in exploring and hypothesizing the preparation of ideal ZSM-22 made by global researchers in recent years. It focuses on the methods of adjusting, doping, and postprocessing of zeolites to elaborate their influence on the catalytic performance, and summarizes the optimization law of the zeolite support as well as its limitations in the preparation process. The structure-activity relationship between the modified molecular sieve properties and the catalytic performance is discussed in detail. The paper ends with a discussion about the future trends of the research on postprocessing ZSM-22 for enhancing its quality and efficiency.
Key words:  alkane    hydroisomerization    ZSM-22 molecular sieve    postprocessing    reaction mechanism
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TQ032  
  TE65  
通讯作者:  *伞晓广,博士,沈阳化工大学化学工程学院教授,博士研究生导师。目前主要从事功能纳米材料的设计、开发及其在碳一化工、工业催化以及气敏传感器应用等领域的研究工作。sanxiaoguang@syuct.edu.cn   
作者简介:  王智莹,沈阳化工大学化学工程学院硕士研究生,在校内导师伞晓广教授和联合培养单位导师的指导下开展庚烷临氢异构催化剂的相关研究。
引用本文:    
王智莹, 伞晓广, 苗昱露, 董磊. ZSM-22在烷烃加氢异构反应中应用的研究进展[J]. 材料导报, 2025, 39(24): 24120008-9.
WANG Zhiying, SAN Xiaoguang, MIAO Yulu, DONG Lei. Research Progress on Applying ZSM-22 to Alkane Hydroisomerization. Materials Reports, 2025, 39(24): 24120008-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120008  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120008
1 Dai X J, Cheng Y, Liu T T, et al. Energy & Fuels, 2024, 38(11), 9262.
2 Zhang W, Li S, Zhang H P, et al. ChemistrySelect, 2023, 8(48), e202301216.
3 Zhang Y, Guo C M, Wang W, et al. Fuel Processing Technology, 2024, 256, 108076.
4 Kang Y H, Zhang X Q, Gao J, et al. Chemical Engineering Journal, 2024, 483, 149372.
5 Tang R Y, Zhang J T, Shen Z B, et al. Journal of the Energy Institute, 2024, 114, 101652.
6 Shamanaev I V, Vlasova E N, Scherbakova A M, et al. Microporous and Mesoporous Materials, 2023, 359, 112667.
7 Gu Y B, Wei R P, Ren X Q, et al. Catalysis Letters, 2007, 113(1-2), 41.
8 Laxmi N C S, Thybaut J W, Marin G B, et al. Journal of Catalysis, 2003, 220(2), 399.
9 Cheng K, van der Wal Lars I, Yoshida H, et al. Angewandte Chemie, 2020, 132(9), 3620.
10 GB 17930-2016 Gasoline for motor vehicles, Standard Press of China, China, 2016(in Chinese).
GB 17930-2016 车用汽油, 中国标准出版社, 2016.
11 Tan Y C, Hu WenJ, Du Y Y, et al. Applied Catalysis A, 2021, 611, 117916.
12 Webb E B, Grest G S, Mondello M. Journal of Physical Chemistry B, 1999, 103, 4949.
13 Yu G, Qiu M H, Wang T, et al. Microporous and Mesoporous Materials, 2021, 320, 111076.
14 Li T, Zhang L, Tao Z C, et al. Fuel, 2020, 279, 118487.
15 Noh G, Zones S I, Iglesia E. Journal of Catalysis, 2019, 377, 255.
16 Poursaeidesfahani A, de Lange M F. Journal of Catalysis, 2017, 353, 54.
17 Guisnet M. Catalysis Today, 2013, 218-219, 123.
18 Ono Y. Catalysis Today, 2003, 81(1), 3.
19 López C M, Sazo V, Pérez P, et al. Applied Catalysis A, 2010, 372(1), 108.
20 Liu L L, Zhang M W, Wang L, et al. Fuel Processing Technology, 2023, 241, 107605.
21 Kriz J F, Pope T D, Stanciulescu M. Industrial & Engineering Chemistry Research, 1998, 37, 4560.
22 Souverijns W, Martens J A, Froment G F, et al. Journal of Catalysis, 1998, 174, 177.
23 Wiedemann S C C, Ristanović Z, Whiting G T, et al. Chemistry-a European Journal, 2015, 22(1), 199.
24 Tiong S S. Industrial & Engineering Chemistry Research, 1993, 32, 3.
25 Tiong S S. Industrial & Engineering Chemistry Research, 1993, 32, 403.
26 Dhar A, Vekariya R L, Sharma P. Petroleum, 2017, 3(4), 489.
27 Mihályi R M, Lónyi F, Beyer H K, et al. Journal of Molecular Catalysis A, 2013, 367, 77.
28 Matens J A, Jacobs P A. Journal of Catalysis, 1990, 124, 357.
29 Thybaut J W, Marin G B. Advances in Catalysis, 2016, 59(360-564), 109.
30 Brouwer D M, Hogeveen H. Progress in Physical Organic Chemistry, 1972, 9, 179.
31 Chen F, Wang X D, Huang W, et al. Chemical Industry and Engineering Progress, 2024, 43(3), 1309 (in Chinese).
陈风, 王宣德, 黄伟, 等. 化工进展, 2024, 43(3), 1309.
32 Sousa J L V, Ribeiro T R S, Silva B J B, et al. Research, Society and Development, 2022, 11(3), 2525.
33 Chen L, Lu P, Yuan Y Y, et al. Chinese Journal of Catalysis, 2016, 37(8), 1381.
34 Jamil A K, Muraza O, Yoshioka M, et al. Industrial & Engineering Chemistry Research, 2014, 53(50), 19498.
35 Chen Z Q, Liu S Y, Wang H H, et al. Journal of Catalysis, 2018, 361, 177.
36 Okamoto M, Nishimura Y, Takahashi M, et al. Crystal Growth& Design, 2018, 18(11), 6573.
37 Wang Q, Shan H C, Sim L B. Industrial & Engineering Chemistry Research, 2023, 62, 11470.
38 Wang Y C, Yu J S, Yang F, et al. Industrial & Engineering Chemistry Research, 2023, 62(26), 10012.
39 Jamil A K, Muraza O, Sanhoob M, et al. Journal of Analytical and Applied Pyrolysis, 2014, 110, 338.
40 Zhang L, Fu W Q, He L W, et al. Microporous and Mesoporous Materials, 2021, 313, 110834.
41 Jamil A K, Muraza O, Al-Amer A M T. Journal of Industrial and Engineering Chemistry, 2015, 29, 112.
42 Luo Y, Wang Z D, Jin S Q, et al. Catalysis Science & Technology, 2016, 18(30), 5611.
43 Wang L, Niu P Y, Xi H J, et al. Industrial & Engineering Chemistry Research, 2021, 60(47), 17006.
44 Wang X Y, Zhang X W, Wang Q F. Materials Letters, 2019, 244, 96.
45 Liu S Y, Ren J, Zhu S J, et al. Journal of Catalysis, 2015, 330, 485.
46 Li T S, Chen T, Ye Y H, et al. Chinese Journal of Chemical Engineering, 2024, 66, 51.
47 Jamil A K, Nishitoba T, Ahmed M H M, et al. Energy & Fuels, 2019, 33(12), 12679.
48 He L W, Fu W Q, Li L Y, et al. New Journal of Chemistry, 2021, 45(5), 2820.
49 Xie Z K, Chen Q L, Zhang C F, et al. Journal of Physical Chemistry B, 2000, 104, 853.
50 Groen J C, Moulijn J A, Pérez-Ramírez J. Journal of Materials Chemistry, 2006, 16(22), 2121.
51 Groen J C, Jansen J C, Moulijn J A, et al. Journal of Physical Chemistry, 2004, 108, 13062.
52 Guo K, Ma A Z, Wang Z J, et al. New Journal of Chemistry, 2022, 46(35), 16752.
53 Liu H, Xie S J, Xin W J, et al. Catalysis Science & Technology, 2016, 6(5), 1328.
54 Li S Y, Lu B B, Wang Y G, et al. Fuel Processing Technology, 2023, 246, 107759.
55 Gackowski M, Tarach K, Kuterasiński Ł, et al. Microporous and Mesoporous Materials, 2018, 263, 282.
56 Del Campo P, Beato P, Rey F, et al. Catalysis Today, 2018, 299, 120.
57 Liu S Y, Luo C L, Deng X, et al. Fuel, 2022, 328(15), 125282.
58 Liu S Y, Ren J, Zhang H K, et al. Journal of Catalysis, 2016, 335, 11.
59 Liu S Y, Zhang L, Zhang L W, et al. New Journal of Chemistry, 2020, 44(12), 4744.
60 Wang X Y, Zhang X W, Wang Q F. Industrial & Engineering Chemistry Research, 2019, 58(19), 8495.
61 Wang X Y, Zhang X W, Wang Q F. Applied Catalysis A, 2020, 590, 117335.
62 Kuznetsov P S, Dementiev K I, Palankoev T A, et al. Petroleum Chemistry, 2021, 61(6), 649.
63 Wang J B, Xu S T, Li J Z, et al. RSC Advances, 2015, 5(108), 88928.
64 Kurniawan T, Muraza O, Miyake K, et al. Industrial & Engineering Chemistry Research, 2017, 56(15), 4258.
65 Zheng Y F, Ding H X, Xing E H, et al. Catalysis Today, 2022, 405-406, 30.
66 Zhai M, Wu W X, Xing E H, et al. Chemical Engineering Journal, 2022, 440, 135874.
67 Lv G, Wang C X, Wang P, et al. ChemCatChem, 2019, 11(5), 1431.
68 Utsunomiya T, Kanzawa T, Ichii T, et al. Thin Solid Films, 2017, 638, 28.
69 Abdalla A, Arudra P, Al-Khattaf S S. Applied Catalysis A, 2017, 533, 109.
70 Niu P Y, Xi H J, Ren J, et al. Catalysis Science & Technology, 2018, 8(24), 6407.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 苏友义, 张明, 陶雯艳, 杨萍萍, 郭星辰, 邓徐, 谢佳乐. 硝酸盐催化还原合成氨研究进展[J]. 材料导报, 2025, 39(7): 24040024-12.
[3] 唐晓龙, 温佳俊, 刘媛媛, 王成志, 罗宁, 段二红, 周远松, 易红宏, 高凤雨. CoMn2O4/Ce-TiO2双功能催化剂SCR脱硝协同CO氧化性能研究[J]. 材料导报, 2025, 39(5): 24020126-7.
[4] 万福程, 梁继超, 于爱华, 张嘉振, 路新. 钛涂层制备与后处理工艺及应用研究进展[J]. 材料导报, 2025, 39(2): 24010131-9.
[5] 笪强, 马国政, 康嘉杰, 黄艳斐, 周永宽, 王海斗. 耐磨耐蚀高熵合金涂层性能研究进展[J]. 材料导报, 2024, 38(24): 23110145-10.
[6] 朱文超, 张雷, 张亚洲, 李明清, 张建峰, 闵凡路. 碱性速凝剂对盾构壁后注浆浆体性能影响及微观机理研究[J]. 材料导报, 2024, 38(19): 23040077-7.
[7] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[8] 皮晓琳, 李鸿鹏, 田乙然, 童应成, 倪文若, 袁藤瑞, 唐振艳. 钯催化环加成反应构建中环化合物的研究进展[J]. 材料导报, 2024, 38(12): 22110292-12.
[9] 成健, 廖建飞, 杨震, 孔维畅, 刘顿. 太阳能电池多晶硅表面激光制绒技术研究进展[J]. 材料导报, 2023, 37(6): 21050219-10.
[10] 梁李斯, 马洪月, 郭文龙, 张宇, 弥晗, 张自恒, 邢相栋. 锰基低温NH3-SCR催化剂脱除NOx的研究综述[J]. 材料导报, 2023, 37(22): 22010173-13.
[11] 蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
[12] 刘源涛, 王琰帅, 董必钦. 偏铝酸钠激发石灰石粉的胶凝材料合成机理研究[J]. 材料导报, 2023, 37(1): 22030034-5.
[13] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[14] 李娜, 陈泽东, 王晶晶, 张凯, 武文斐. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 20080137-8.
[15] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed