Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24100208-8    https://doi.org/10.11896/cldb.24100208
  无机非金属及其复合材料 |
基于逾渗理论的实海环境再生混凝土抗Cl-渗透特性研究
朱元浪1, 张恒武2, 吕凯越1, 杨鄯旭1, 张式玉1, 王史以诺1, 谢柏军1, 高嵩1,*
1 青岛理工大学土木工程学院,山东 青岛 266011
2 山东和兴建筑安装工程有限公司,山东 滨州 256600
Study on the Chloride Ion Permeability Characteristics of Recycled Concrete in Real Marine Environments Based on Percolation Theory
ZHU Yuanlang1, ZHANG Hengwu2, LYU Kaiyue1, YANG Shanxu1, ZHANG Shiyu1, WANG Shiyinuo1, XIE Bojun1, GAO Song1,*
1 College of Civil Engineering, Qingdao University of Technology, Qingdao 266011, Shandong, China
2 Shandong Hexing Construction and Installation Engineering Co., Ltd., Binzhou 256600, Shandong, China
下载:  全 文 ( PDF ) ( 29265KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究实海暴露环境再生骨料混凝土(RAC)孔隙结构特性的演化过程及离子传输机制,基于逾渗理论,借助背散射电子成像技术(BSE)等微观测试方法以及Image J等图像分析软件进行孔隙提取和划分,结合宏观性能分析,深入探讨了实海暴露环境下氯离子侵蚀对RAC内部孔隙和裂隙的发展及演变的影响,并建立抗Cl-渗透性能与逾渗参数的关系,分析了再生混凝土类型和实海暴露龄期对二维逾渗特性的影响。研究结果表明,再生混凝土的宏观性能与逾渗概率、最大团簇大小和湿座率等逾渗参数具有较好的相关性,相关逾渗参数可有效表征实海暴露环境氯离子对再生混凝土体系的侵蚀作用;适量掺加粉煤灰和偏高岭土可显著提高再生混凝土的抗压强度和抗氯离子侵蚀能力,其中,粉煤灰和偏高岭土的掺量分别为20%和10%时效果最显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱元浪
张恒武
吕凯越
杨鄯旭
张式玉
王史以诺
谢柏军
高嵩
关键词:  再生混凝土  粉煤灰  偏高岭土  实海暴露  逾渗参数  二维逾渗    
Abstract: To investigate the evolution of pore structure characteristics and ion transport mechanisms of recycled aggregate concrete (RAC) subjected to real marine exposure environments, based on percolation theory, backscattered electron imaging (BSE) and other microstructural testing techniques, along with Image J software for pore extraction and classification, were utilized in conjunction with macroscopic performance analysis. The impact of chloride ion penetration on the development and evolution of internal pores and cracks in RAC under marine exposure was syste-matically explored, and then a relationship between chloride ion permeability and percolation parameters was established. The effects of recycled concrete type and marine exposure age on the two-dimensional percolation characteristics were also examined. The results reveal a strong correlation between the macroscopic performance of RAC and percolation parameters such as percolation probability, maximum cluster size, and saturation degree. These percolation parameters can effectively characterize the chloride ion erosion mechanism in RAC under marine conditions. The appropriate addition of fly ash and metakaolin significantly enhances both the compressive strength and chloride ion resistance of RAC. The optimal amount of fly ash and metakaolin is 20% and 10%, respectively.
Key words:  recycled concrete    fly ash    metakaolin    real marine exposure    percolation parameter    2D percolation
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TU528  
基金资助: 国家自然科学基金委员会-山东省人民政府联合基金(U2006233)
通讯作者:  *高嵩,博士,教授。主要从事建筑材料耐久性研究,新型复合材料的制备、性能研究,工矿业固体废弃物资源化利用研究等工作。Gaosong727@126.com   
作者简介:  朱元浪,青岛理工大学土木工程学院硕士研究生,在高嵩教授的指导下进行研究。目前主要研究领域为固体废弃物资源化利用。
引用本文:    
朱元浪, 张恒武, 吕凯越, 杨鄯旭, 张式玉, 王史以诺, 谢柏军, 高嵩. 基于逾渗理论的实海环境再生混凝土抗Cl-渗透特性研究[J]. 材料导报, 2025, 39(23): 24100208-8.
ZHU Yuanlang, ZHANG Hengwu, LYU Kaiyue, YANG Shanxu, ZHANG Shiyu, WANG Shiyinuo, XIE Bojun, GAO Song. Study on the Chloride Ion Permeability Characteristics of Recycled Concrete in Real Marine Environments Based on Percolation Theory. Materials Reports, 2025, 39(23): 24100208-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100208  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24100208
1 Soni A, Das P K, Hashmi A W, et al. Sustainable Chemistry and Pharmacy, 2022, 27, 100706.
2 Liu J, Ma K, Shen J, et al. Construction and Building Materials, 2023, 371, 130772.
3 Wang D, Lu C, Zhu Z, et al. Case Studies in Construction Materials, 2023, 19, e02384.
4 Cao Y B, Li Q Y, Wang Z X, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(8), 2678 (in Chinese).
曹瑜斌, 李秋义, 王忠星, 等. 硅酸盐通报, 2017, 36(8), 2678.
5 Liu J, Ma K, Shen J, et al. Construction and Building Materials, 2023, 371, 130772.
6 Zhang M, Sun S, Liu K, et al. Journal of Building Engineering, 2023, 79, 107838.
7 Sun J, Jin Z, Chang H, et al. Journal of Building Engineering, 2024, 84, 108591.
8 Wang J B, Zhang K F, Zheng K H, et al. Materials Reports, 2024, 38(18), 71(in Chinese).
王家滨, 张凯峰, 郑康华, 等. 材料导报, 2024, 38(18), 71.
9 Yue G, Ma Z, Liu M, et al. Construction and Building Materials, 2020, 245, 118419.
10 Guo X. Analysis of ion transport characteristics in recycled aggregate concrete based on percolation theory. Master’s Thesis, Qingdao University of Technology, China, 2023 (in Chinese).
郭欣. 基于逾渗理论的再生混凝土离子传输特征分析. 硕士学位论文, 青岛理工大学, 2023.
11 Gao S, Guo X, Ban S, et al. Journal of Materials Research and Technology, 2023, 272615.
12 Guo J, Gao S, Liu A, et al. Case Studies in Construction Materials, 2024, 20e02774.
13 Chen W Z, Jiao C J, Zhang X C, et al. Structures, 2023, 58, 105388.
14 Bao J W, Zhang Z J, Zhang P, et al. Materials Reports, 2021, 35(7), 7087(in Chinese).
鲍玖文, 庄智杰, 张鹏, 等. 材料导报, 2021, 35(7), 7087.
15 He H Z, Liu J, Yang S J, et al. Concrete and Cement Products, 2000(3), 7(in Chinese).
贺鸿珠, 刘军, 杨胜杰, 等. 混凝土与水泥制品, 2000(3), 7.
16 Zhang Z J. Study on the chloride ion erosion mechanism of cement-based materials in natural sea exposure and artificially simulated tidal zones. Master’s Thesis, Qingdao University of Technology, China, 2021(in Chinese).
庄智杰. 实海暴露和人工模拟潮汐区水泥基材料氯离子侵蚀机理研究. 硕士学位论文, 青岛理工大学, 2021.
17 Chen J. numerical simulation of permeability for silicone rubber-carbon black composites based on MATLAB. Master’s Thesis, Wuhan University of Science and Technology, China, 2019(in Chinese).
陈俊. 基于MATLAB的硅橡胶-炭黑复合材料的逾渗数值模拟. 硕士学位论文, 武汉科技大学, 2019.
18 Liu Y, Qin Z, Chen B, et al. Construction and Building Materials. 2020, 231, 117131.
19 Gao S, Guo J, Gong Y, et al. Case Studies in Construction Materials, 2020, 16, e01034.
20 Huang X, Yang D, Kang Z. Physica A, 2021, 570, 125800.
21 Shahid M I, Xiong N N, Ren J. Results in Physics, 2023, 46, 106275.
22 Wang J F. Monte Carlo study of the over-permeation model. Master’s Thesis, National University of Defense Technology, China, 2013(in Chinese).
王俊峰. 逾渗模型的蒙特卡罗研究. 硕士学位论文, 国防科学技术大学, 2013.
23 Wu Y, Xiang Q D, Jiang Y Q, et al. Concrete and Cement Products, 2014(9), 59(in Chinese).
吴叶, 相秋迪, 蒋亚清, 等. 混凝土与水泥制品, 2014(9), 59.
24 Zhao J X, Li J W, Xia X J, et al. China Harbour Engineering, 2023, 43(10), 55(in Chinese).
赵俊先, 李军伟, 夏旭江, 等. 中国港湾建设, 2023, 43(10), 55.
25 Gao S, Guo Y X, Wu B Q, et al. Concrete, 2019(6), 78 (in Chinese).
高嵩, 郭远新, 吴本清, 等. 混凝土, 2019(6), 78.
[1] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[2] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[3] 杨绿峰, 朱恩. 粉煤灰混凝土氯离子扩散系数的广源大样本模型[J]. 材料导报, 2025, 39(21): 24100140-7.
[4] 朱绘美, 刘毓, 李辉. 微波养护期间磨细粉煤灰碱激发胶凝材料的强度发展[J]. 材料导报, 2025, 39(20): 24090095-7.
[5] 付宇, 高鹏, 詹炳根, 李景哲, 胡焱博, 余其俊. 非规则再生骨料建模方法及其对混凝土抗压性能的影响[J]. 材料导报, 2025, 39(20): 24100247-9.
[6] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[7] 康天蓓, 梁玉, 梁意博, 王凤池, 周静海. 基于多机器学习模型的再生混凝土抗盐冻性能预测[J]. 材料导报, 2025, 39(19): 24100032-11.
[8] 李曈, 王庆贺, 任庆新. 钢渣骨料/粉煤灰对ECC力学与介质传输性能的影响机理[J]. 材料导报, 2025, 39(19): 24060141-7.
[9] 侯宇颖, 李涛, 吕寅, 陈刚, 胡夏闽, 唐磊, 杨建明. 粉煤灰和钢渣粉对磷酸钾镁水泥浆体硫酸盐侵蚀行为的影响[J]. 材料导报, 2025, 39(18): 24080025-7.
[10] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[11] 涂义亮, 任思雨, 赵林, 凌玲, 柴贺军. 玄武岩纤维-粉煤灰提升水泥土抗剪性能试验研究[J]. 材料导报, 2025, 39(16): 24050216-8.
[12] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[13] 兰亚坤, 李丹, 丁立洋, 董庭轩, 李依鹏, 郭生伟. 粉煤灰基防鼠咬PVC线缆护套材料的制备与性能研究[J]. 材料导报, 2025, 39(12): 24060115-6.
[14] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[15] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed