Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24100194-8    https://doi.org/10.11896/cldb.24100194
  高分子与聚合物基复合材料 |
高效保水与种子萌发:木质素海藻酸钠凝胶球的合成及其土壤改良作用
张振豪1, 赵晨曦1, 朱飞宇1, 唐欣1, 盛洁2,*, 杨方源2,*
1 新疆农业大学资源与环境学院,乌鲁木齐 830052
2 新疆农业大学数理学院,乌鲁木齐 830052
Efficient Water Retention and Seed Germination :Synthesis of Lignin Sodium Alginate Gel Beads and Their Soil Improvement Effects
ZHANG Zhenhao1, ZHAO Chenxi1, ZHU Feiyu1, TANG Xin1, SHENG Jie2,*, YANG Fangyuan2,*
1 College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
2 College of Mathematics and Physics, Xinjiang Agricultural University, Urumqi 830052, China
下载:  全 文 ( PDF ) ( 11350KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 水的可获取性是制约农业可持续发展的关键生态因素。为减轻干旱对作物成活率的影响,通过交联木质素磺酸钠(SL)、海藻酸钠(SA)和聚乙烯醇(PVA),成功合成了纳米复合水凝胶微球(SPL)。利用SEM、BET、XRD、TGA和FTIR等技术对SPL进行了全面表征。研究了SPL水凝胶对土壤性质(如电导率和pH)的影响,并评估了其在干旱条件下对小麦萌发和生长的影响。研究发现,木质素的加入为SPL水凝胶提供了结构支撑,赋予了其丰富的孔隙结构,使得其最大吸水率达441.52 g/g,优于许多实验室制备的水凝胶保水材料。SPL水凝胶的添加对土壤电导率和pH无显著影响,但能显著提高土壤保水能力约20%。在干旱环境下,SPL水凝胶处理的小麦种子表现出更高的发芽率和生长指标,包括株高、根长和鲜重。这种成本低、制备快速、保水效果优异的水凝胶在农业土壤改良中显示出巨大的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张振豪
赵晨曦
朱飞宇
唐欣
盛洁
杨方源
关键词:  木质素  海藻酸钠  农用水凝胶  植物生长    
Abstract: The accessibility of water is a critical ecological factor that constrains the sustainable development of agriculture. To mitigate the impact of drought on crop survival rates, nanocomposite hydrogel microspheres (SPL) were successfully synthesized by crosslinking sodium lignosulfonate (SL), sodium alginate (SA), and polyvinyl alcohol (PVA). And they are comprehensively characterized using techniques such as scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The influence of SPL hydrogel on soil properties, such as conductivity and pH, was investigated, along with its impact on wheat germination and growth under drought conditions. The results show that the incorporation of lignin provides structural support to the SPL hydrogel, endowing it with a rich porous structure, which resulted in a maximum water absorption capacity of 441.52 g/g, which is higher than that of many other laboratory-prepared hydrogel water-retention materials. The addition of SPL hydrogel has no significant effect on soil conductivity and pH, but it significantly improves soil water retention by approximately 20%. Under drought environment, wheat treated with SPL hydrogel exhibits higher germination rates and growth indicators, including plant height, root length, and fresh weight. This low-cost, rapidly prepared, and highly water-retentive hydrogel shows great potential for application in agricultural soil amelioration.
Key words:  lignin    sodium alginate    hydrogel agricultural utilization    plant growth
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TQ352  
基金资助: 国家自然科学基金(12364030);新疆维吾尔自治区自然科学基金(2022D01B20;202501A49)
通讯作者:  *盛洁,博士,新疆农业大学数理学院教授、研究生导师。目前主要从事复杂生理环境下仿生膜的失稳机制、生物质基多肽功能材料等方面的研究工作。shj1595@163.com;杨方源,博士,新疆农业大学数理学院副教授、硕士研究生导师。目前主要从事环境功能材料、超分子材料等方面的研究工作。yangfy@xjau.edu.cn   
作者简介:  张振豪,新疆农业大学资源与环境学院硕士研究生,在杨方源副教授的指导下进行研究。目前主要研究领域为木质素基水凝胶的制备及其在农业领域的应用。
引用本文:    
张振豪, 赵晨曦, 朱飞宇, 唐欣, 盛洁, 杨方源. 高效保水与种子萌发:木质素海藻酸钠凝胶球的合成及其土壤改良作用[J]. 材料导报, 2025, 39(23): 24100194-8.
ZHANG Zhenhao, ZHAO Chenxi, ZHU Feiyu, TANG Xin, SHENG Jie, YANG Fangyuan. Efficient Water Retention and Seed Germination :Synthesis of Lignin Sodium Alginate Gel Beads and Their Soil Improvement Effects. Materials Reports, 2025, 39(23): 24100194-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100194  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24100194
1 Sanaullah M, Chabbi A, Rumpel C, et al. Soil Biology and Biochemistry, 2012, 55, 132.
2 El-Saied H, Waley A I, Basta A H, et al. Polymer-Plastics Technology and Engineering, 2004, 43(3), 779.
3 Ibrahim M M, Abd-Eladl M, Abou-Baker N H. Journal of Applied Polymer Science, DOI:org/10. 1002/app. 42652.
4 Mahmood Z, Yameen M, Jahangeer M,et al. Lignin-trends and Applications, 2018, 10, 181.
5 Takigami H, Taniguchi N, Shimizu Y, et al. Water Science and Technology, 1998, 38 (7), 207.
6 Wilske B, Bai M, Lindenstruth B, et al. Environmental Science and Pollution Research, 2014, 21 (16), 9453.
7 Mai C, Schormann W, Majcherczyk A, et al. Applied Microbiology and Biotechnology, 2004, 65 (4), 479.
8 Sarvaš M, Pavlenda P, Takáová E. Australian Journal of Forensic Sciences, 2007, 53 (5), 204.
9 Fan Z P, Cheng P, Zhang D M, et al. Material Reports, 2020, 34(21), 210125(in Chinese).
范治平, 程萍, 张德蒙, 等. 材料导报, 2020, 34(21), 210125.
10 Feng Q H. Synthesis and properties of lignin-containing hydrogels. Master’s Thesis, South China University of Technology, China, 2012(in Chinese).
冯清华. 含木质素水凝胶的合成及其性能研究. 硕士学位论文, 华南理工大学, 2012.
11 Xiang J Y. Preparation and application of modified sodium lignosulfonate hydrogel. Master’s Thesis, Hunan University, China, 2013(in Chinese).
向育君. 改性木质素磺酸钠水凝胶的制备和应用研究. 硕士学位论文, 湖南大学, 2013.
12 Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. Chemical Reviews, 2010, 110, 3552.
13 Huang W, Li H Q, Guan H, et al. Material Reports, 2022, 36(18), 224(in Chinese).
黄薇, 李红强, 官航, 等. 材料导报, 2022, 36(18), 224.
14 Wang X Y, Wang G H, Xue Z L, et al. China Pulp and Paper, 2024, 39(2), 140(in Chinese).
王小怡, 王冠华, 薛政隆, 等. 中国造纸学报, 2024, 39(2), 140.
15 Yang F, Ma J Z, Bao Y. Material Reports, 2019, 33(7), 1227(in Chinese).
杨帆, 马建中, 鲍艳. 材料导报, 2019, 33(7), 1227.
16 Li P H, Wu C W, Liu C, et al. Chinese Journal of Biotechnology, 2022, 38(7), 2489(in Chinese).
李鹏辉, 吴彩文, 刘宸, 等. 生物工程学报, 2022, 38(7), 2489.
17 Yun X J, Chi M C, Guo C Y, et al. China Paper, 2019, 38(10), 62(in Chinese).
运晓静, 迟明超, 郭晨艳, 等. 中国造纸, 2019, 38(10), 62.
18 Passauer L, Struch M, Schuldt S, et al. ACS Applied Materials & Interfaces, 2012, 4(11), 5852.
19 Mazloom N, Khorassani R, Zohuri G H, et al. CLEAN-Soil, Air, Water, 2019, 47(11), 1900101.
20 Mazloom N, Khorassani R. Environmental and Experimental Botany, 2020, 175, 104055.
21 Pishnamazi M, Iqbal J, Shirazian S, et al. International Journal of Biological Macromolecules, 2019, 124, 354.
22 Li X, You X, Wang X, et al. Advanced Functional Materials, 2024, 35(8), 2415744.
23 Meng Y, Liu X, Li C, et al. International Journal of Biological Macromolecules, 2019, 135, 815.
24 Passauer L, Fischer K, Liebner F. Holzforschung, 2011, 65, 309.
25 Hallinan D T, De Angelis M G, Baschetti M G, et al. Macromolecules, 2010, 43, 4667.
26 Paulino A T, Belfiore L A, Kubota L T, et al. Desalination, 2011, 275, 187.
27 Rabat N E, Hashim S, Majid R A. Procedia Engineering, 2016, 148, 201.
28 Grant G T, Morris E R, Rees D A, et al. FEBS Letters, 1973, 32, 195.
29 Braccini I, Pérez S. Biomolecules, 2001, 2, 1089.
30 Wang J, Zhou X, Xiao H. Carbohydrate Polymers, 2013, 94, 749.
31 Harding S E, Smith I H, Lawson C J. Carbohydrate Polymers, 2011, 83 (2), 329.
32 Zhang X. Preparation and mechanism study of lignin/polyvinyl alcohol functional composites. Master’s Thesis, South China University of Technology, China, 2021(in Chinese).
张晓. 木质素/聚乙烯醇功能复合材料的制备及其机理研究. 硕士学位论文, 华南理工大学, 2021.
33 Aoki D, Teramoto Y, Nishio Y. Cellulose, 2011, 18, 1441.
34 Aloui H, Khwaldia K, Hamdi M, et al. ACS Sustainable Chemistry & Engineering, 2016, 4, 794.
35 Chang C, Zhang L. Carbohydrate Polymers, 2011, 84, 40.
36 Aadil K R, Prajapati D, Jha H. Food Packaging and Shelf Life, 2016, 10, 25.
37 Schneider M, Finimundi N, Podzorova M, et al. Materials, 2021, 14, 543.
38 Li C D, Lu J J, Li S M, et al. Materials, 2017, 10, 84.
39 Han X B, Li R, Miao P P et al. Materials, 2022, 15, 2310.
40 Huang Y. In:MATEC Web of Conferences. EDP Sciences, 2023, pp. 01012.
41 Ryoo R. Nature Nanotechnology, 2019, 14(1),40.
42 Song B, Liang H X, Sun R R, et al. International Journal of Biological Macromolecules, 2020, 144, 219.
43 Xu Y Y. Study on the separation and extraction of lignin from cotton straw by choline chloride eutectic solvent. Master’s Thesis, Shihezi University, China, 2023(in Chinese).
徐媛媛. 氯化胆碱基低共熔溶剂分离提取棉秆木质素的研究. 硕士学位论文. 石河子大学, 2023.
44 Bai J X. Regulation of microcrystalline structure and electrochemical properties of lignin-based carbon nanofiber graphite crystallites. Master’s Thesis, Qingdao University, China, 2023(in Chinese).
柏吉兴. 木质素基纳米碳纤维类石墨微晶结构的调控及其电化学性能研究. 硕士学位论文, 青岛大学, 2023.
45 Wang X, Zhang Y, Hao C, et al. New Journal of Chemistry, 2014, 38 (12), 6057.
46 Rashidzadeh A, Olad A. Carbohydrate Polymers, 2014, 114, 269.
47 Hua S, Ma H, Li X, et al. International Journal of Biological Macromo-lecules, 2010, 46, 517.
48 Li M, Wu Q, Song K, et al. ACS Sustainable Chemistry & Engineering, 2015, 3, 821.
49 Olad A, Zebhi H, Salari D, et al. Materials Science & Engineering C, Materials for Biological Applications, 2018, 90, 333.
50 Byrn M E, Park K, Peppas N A. Advanced Drug Delivery Reviews, 2002, 54, 149.
51 Pourjavadi A, Ghasemzadeh H, Soleyman R. Journal of Applied Polymer Science, 2007, 105(5), 2631.
52 Marandi G B, Mahdavinia G R, Ghafary S. Journal of Polymer Research, 2001, 18(6), 1487.
53 Duval A, Lawoko M. Reactive and Functional Polymers, 2014, 85, 78.
54 Peng R, Yu Y, Chen S, et al. RSC Advances, 2014, 4, 351495.
55 Abobatta W. Advances in Agriculture Environmental Science, 2018, 1, 59.
56 Lv T, Yang H, Zhang R, et al. The Journal of Agricultural Science, 2017, 8, 341.
[1] 黄思淼, 李晓玉, 吴新宇, 连海兰. 木质素及其复合抗紫外屏蔽材料的研究进展[J]. 材料导报, 2025, 39(17): 24080218-9.
[2] 唐瑞欣, 朱子琪, 王玲, 杨培, 周晓燕. 光催化解聚木质素及其模型化合物的研究进展[J]. 材料导报, 2025, 39(16): 24080059-11.
[3] 李成晗, 朱旭东, 李依萍, 燕红. 利用木质素碳量子点提升UIO-66-NH2材料光催化水解产氢效率研究[J]. 材料导报, 2025, 39(15): 24060189-8.
[4] 谢雨兮, 吴双双, 方晓阳, 徐伟. 天然高分子络合无机纳米复合抗菌剂研究进展[J]. 材料导报, 2025, 39(13): 24040133-11.
[5] 杨锦, 罗亚娟, 李连燚, 姜宇洋, 姜桂英, 刘世亮. 海藻酸钠复合凝胶微球的制备及环境应用研究进展[J]. 材料导报, 2025, 39(12): 24030061-15.
[6] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[7] 姜波, 焦欢, 郭新宇, 金永灿. 木质素熔融沉积式3D打印的分子结构-流变学响应关系研究进展[J]. 材料导报, 2024, 38(11): 22100182-8.
[8] 杜鹏, 刘洁, 张静, 马婕妤, 耿艳艳, 曹丰. 木质素碳点的优化合成及用于金属离子的检测[J]. 材料导报, 2023, 37(5): 21080027-6.
[9] 马慧, 方月, 吴一楠, 李风亭. UiO-66(Zr)/海藻酸钠复合材料的制备优化及净化水中As(V)的性能研究[J]. 材料导报, 2022, 36(20): 22050004-7.
[10] 夏容绮, 刘毅, 郭洪武. 透光性木材功能化改性研究进展[J]. 材料导报, 2021, 35(5): 5188-5194.
[11] 陈浩伟, 余先纯, 张传艳, 李銮玉, 孙德林, 郝晓峰. 木质素基模板炭的制备及电化学性能[J]. 材料导报, 2021, 35(24): 24164-24171.
[12] 陈欢, 汪宗涛, 陈仕清, 范东斌. 木质素环氧化接枝物及其制备大豆蛋白胶黏剂研究[J]. 材料导报, 2021, 35(20): 20190-20194.
[13] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[14] 杨淑敏, 刘杏娥, 尚莉莉, 马建锋, 田根林, 江泽慧. 竹材木质素特性及表征方法研究进展[J]. 材料导报, 2020, 34(7): 7177-7182.
[15] 何正文, 田红, 黄章俊, 胡章茂, 刘威. 基于量子化学理论的热解温度对木质素二聚体热解产物分布的影响[J]. 材料导报, 2020, 34(6): 6180-6185.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed