1 College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China 2 College of Mathematics and Physics, Xinjiang Agricultural University, Urumqi 830052, China
Abstract: The accessibility of water is a critical ecological factor that constrains the sustainable development of agriculture. To mitigate the impact of drought on crop survival rates, nanocomposite hydrogel microspheres (SPL) were successfully synthesized by crosslinking sodium lignosulfonate (SL), sodium alginate (SA), and polyvinyl alcohol (PVA). And they are comprehensively characterized using techniques such as scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The influence of SPL hydrogel on soil properties, such as conductivity and pH, was investigated, along with its impact on wheat germination and growth under drought conditions. The results show that the incorporation of lignin provides structural support to the SPL hydrogel, endowing it with a rich porous structure, which resulted in a maximum water absorption capacity of 441.52 g/g, which is higher than that of many other laboratory-prepared hydrogel water-retention materials. The addition of SPL hydrogel has no significant effect on soil conductivity and pH, but it significantly improves soil water retention by approximately 20%. Under drought environment, wheat treated with SPL hydrogel exhibits higher germination rates and growth indicators, including plant height, root length, and fresh weight. This low-cost, rapidly prepared, and highly water-retentive hydrogel shows great potential for application in agricultural soil amelioration.
1 Sanaullah M, Chabbi A, Rumpel C, et al. Soil Biology and Biochemistry, 2012, 55, 132. 2 El-Saied H, Waley A I, Basta A H, et al. Polymer-Plastics Technology and Engineering, 2004, 43(3), 779. 3 Ibrahim M M, Abd-Eladl M, Abou-Baker N H. Journal of Applied Polymer Science, DOI:org/10. 1002/app. 42652. 4 Mahmood Z, Yameen M, Jahangeer M,et al. Lignin-trends and Applications, 2018, 10, 181. 5 Takigami H, Taniguchi N, Shimizu Y, et al. Water Science and Technology, 1998, 38 (7), 207. 6 Wilske B, Bai M, Lindenstruth B, et al. Environmental Science and Pollution Research, 2014, 21 (16), 9453. 7 Mai C, Schormann W, Majcherczyk A, et al. Applied Microbiology and Biotechnology, 2004, 65 (4), 479. 8 Sarvaš M, Pavlenda P, Takáová E. Australian Journal of Forensic Sciences, 2007, 53 (5), 204. 9 Fan Z P, Cheng P, Zhang D M, et al. Material Reports, 2020, 34(21), 210125(in Chinese). 范治平, 程萍, 张德蒙, 等. 材料导报, 2020, 34(21), 210125. 10 Feng Q H. Synthesis and properties of lignin-containing hydrogels. Master’s Thesis, South China University of Technology, China, 2012(in Chinese). 冯清华. 含木质素水凝胶的合成及其性能研究. 硕士学位论文, 华南理工大学, 2012. 11 Xiang J Y. Preparation and application of modified sodium lignosulfonate hydrogel. Master’s Thesis, Hunan University, China, 2013(in Chinese). 向育君. 改性木质素磺酸钠水凝胶的制备和应用研究. 硕士学位论文, 湖南大学, 2013. 12 Zakzeski J, Bruijnincx P C A, Jongerius A L, et al. Chemical Reviews, 2010, 110, 3552. 13 Huang W, Li H Q, Guan H, et al. Material Reports, 2022, 36(18), 224(in Chinese). 黄薇, 李红强, 官航, 等. 材料导报, 2022, 36(18), 224. 14 Wang X Y, Wang G H, Xue Z L, et al. China Pulp and Paper, 2024, 39(2), 140(in Chinese). 王小怡, 王冠华, 薛政隆, 等. 中国造纸学报, 2024, 39(2), 140. 15 Yang F, Ma J Z, Bao Y. Material Reports, 2019, 33(7), 1227(in Chinese). 杨帆, 马建中, 鲍艳. 材料导报, 2019, 33(7), 1227. 16 Li P H, Wu C W, Liu C, et al. Chinese Journal of Biotechnology, 2022, 38(7), 2489(in Chinese). 李鹏辉, 吴彩文, 刘宸, 等. 生物工程学报, 2022, 38(7), 2489. 17 Yun X J, Chi M C, Guo C Y, et al. China Paper, 2019, 38(10), 62(in Chinese). 运晓静, 迟明超, 郭晨艳, 等. 中国造纸, 2019, 38(10), 62. 18 Passauer L, Struch M, Schuldt S, et al. ACS Applied Materials & Interfaces, 2012, 4(11), 5852. 19 Mazloom N, Khorassani R, Zohuri G H, et al. CLEAN-Soil, Air, Water, 2019, 47(11), 1900101. 20 Mazloom N, Khorassani R. Environmental and Experimental Botany, 2020, 175, 104055. 21 Pishnamazi M, Iqbal J, Shirazian S, et al. International Journal of Biological Macromolecules, 2019, 124, 354. 22 Li X, You X, Wang X, et al. Advanced Functional Materials, 2024, 35(8), 2415744. 23 Meng Y, Liu X, Li C, et al. International Journal of Biological Macromolecules, 2019, 135, 815. 24 Passauer L, Fischer K, Liebner F. Holzforschung, 2011, 65, 309. 25 Hallinan D T, De Angelis M G, Baschetti M G, et al. Macromolecules, 2010, 43, 4667. 26 Paulino A T, Belfiore L A, Kubota L T, et al. Desalination, 2011, 275, 187. 27 Rabat N E, Hashim S, Majid R A. Procedia Engineering, 2016, 148, 201. 28 Grant G T, Morris E R, Rees D A, et al. FEBS Letters, 1973, 32, 195. 29 Braccini I, Pérez S. Biomolecules, 2001, 2, 1089. 30 Wang J, Zhou X, Xiao H. Carbohydrate Polymers, 2013, 94, 749. 31 Harding S E, Smith I H, Lawson C J. Carbohydrate Polymers, 2011, 83 (2), 329. 32 Zhang X. Preparation and mechanism study of lignin/polyvinyl alcohol functional composites. Master’s Thesis, South China University of Technology, China, 2021(in Chinese). 张晓. 木质素/聚乙烯醇功能复合材料的制备及其机理研究. 硕士学位论文, 华南理工大学, 2021. 33 Aoki D, Teramoto Y, Nishio Y. Cellulose, 2011, 18, 1441. 34 Aloui H, Khwaldia K, Hamdi M, et al. ACS Sustainable Chemistry & Engineering, 2016, 4, 794. 35 Chang C, Zhang L. Carbohydrate Polymers, 2011, 84, 40. 36 Aadil K R, Prajapati D, Jha H. Food Packaging and Shelf Life, 2016, 10, 25. 37 Schneider M, Finimundi N, Podzorova M, et al. Materials, 2021, 14, 543. 38 Li C D, Lu J J, Li S M, et al. Materials, 2017, 10, 84. 39 Han X B, Li R, Miao P P et al. Materials, 2022, 15, 2310. 40 Huang Y. In:MATEC Web of Conferences. EDP Sciences, 2023, pp. 01012. 41 Ryoo R. Nature Nanotechnology, 2019, 14(1),40. 42 Song B, Liang H X, Sun R R, et al. International Journal of Biological Macromolecules, 2020, 144, 219. 43 Xu Y Y. Study on the separation and extraction of lignin from cotton straw by choline chloride eutectic solvent. Master’s Thesis, Shihezi University, China, 2023(in Chinese). 徐媛媛. 氯化胆碱基低共熔溶剂分离提取棉秆木质素的研究. 硕士学位论文. 石河子大学, 2023. 44 Bai J X. Regulation of microcrystalline structure and electrochemical properties of lignin-based carbon nanofiber graphite crystallites. Master’s Thesis, Qingdao University, China, 2023(in Chinese). 柏吉兴. 木质素基纳米碳纤维类石墨微晶结构的调控及其电化学性能研究. 硕士学位论文, 青岛大学, 2023. 45 Wang X, Zhang Y, Hao C, et al. New Journal of Chemistry, 2014, 38 (12), 6057. 46 Rashidzadeh A, Olad A. Carbohydrate Polymers, 2014, 114, 269. 47 Hua S, Ma H, Li X, et al. International Journal of Biological Macromo-lecules, 2010, 46, 517. 48 Li M, Wu Q, Song K, et al. ACS Sustainable Chemistry & Engineering, 2015, 3, 821. 49 Olad A, Zebhi H, Salari D, et al. Materials Science & Engineering C, Materials for Biological Applications, 2018, 90, 333. 50 Byrn M E, Park K, Peppas N A. Advanced Drug Delivery Reviews, 2002, 54, 149. 51 Pourjavadi A, Ghasemzadeh H, Soleyman R. Journal of Applied Polymer Science, 2007, 105(5), 2631. 52 Marandi G B, Mahdavinia G R, Ghafary S. Journal of Polymer Research, 2001, 18(6), 1487. 53 Duval A, Lawoko M. Reactive and Functional Polymers, 2014, 85, 78. 54 Peng R, Yu Y, Chen S, et al. RSC Advances, 2014, 4, 351495. 55 Abobatta W. Advances in Agriculture Environmental Science, 2018, 1, 59. 56 Lv T, Yang H, Zhang R, et al. The Journal of Agricultural Science, 2017, 8, 341.