Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24100247-9    https://doi.org/10.11896/cldb.24100247
  无机非金属及其复合材料 |
非规则再生骨料建模方法及其对混凝土抗压性能的影响
付宇1, 高鹏1,2,3, 詹炳根1,2,3,*, 李景哲1, 胡焱博1, 余其俊1,2,3
1 合肥工业大学土木与水利工程学院,合肥 230009
2 安徽省土木工程结构与材料重点实验室,合肥 230009
3 水泥基材料低碳技术与装备教育部工程研究中心,合肥 230009
The Modeling Methods of Irregular Recycled Aggregates and Their Impact on the Compressive Strength of Concrete
FU Yu1, GAO Peng1,2,3, ZHAN Binggen1, 2,3,*, LI Jingzhe1, HU Yanbo1, YU Qijun1,2,3
1 School of Civil and Engineering, Hefei University of Technology, Hefei 230009, China
2 Anhui Key Laboratory of Civil Engineering Structures and Materials, Hefei 230009, China
3 Engineering Research Center of Low-carbon Technology and Equipment for Cement-based Materials, Ministry of Education, Hefei 230009, China
下载:  全 文 ( PDF ) ( 39800KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为将再生骨料(Recycled aggregates,RAs)形状纳入考虑,更加细致地研究RAs关键参数对再生混凝土(Recycled aggregate concrete,RAC)抗压性能的影响机制,推进RAs的高值化利用。提出了形状叠加法和对应随机投放算法,实现了包含真实形状RAs的RAC细观几何结构的参数化建模。基于“映射网格法”和内聚力模型建立了RAC的数值模型并通过现有实验数据进行了校准。开展了RAs取代率、残余砂浆含量、新-旧砂浆强度比和孔隙率等关键参数对RAC在压缩荷载下力学响应和断裂过程的影响研究。研究结果表明,在不考虑RAs高吸水率额外降低水灰比的影响情况下,RAC的抗压强度随着RAs取代率、新-旧砂浆强度比、残余砂浆含量和孔隙率的增大而降低(最大降幅可达15%~20%),这主要源于RAs旧界面和初始孔隙对裂缝开展的引导作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付宇
高鹏
詹炳根
李景哲
胡焱博
余其俊
关键词:  再生骨料  再生混凝土  抗压性能  内聚力  有限元分析    
Abstract: To account for the shape of recycled aggregates (RAs) and to thoroughly investigate the influence of key RA parameters on the compressive performance of recycled aggregate concrete (RAC), thiswork aims to promote the high-value utilization of RAs. A Shape Overlay Method and a corresponding random placement algorithm was proposed to achieve parametric modeling of RAC mesostructures incorporating RAs with realistic shapes. Based on the "mapped mesh method" and a cohesive zone model, a numerical model for RAC was established and calibrated by existing experimental data. The effects of key parameters, such as RA replacement ratio, residual mortar content, new-to-old mortar strength ratio, and porosity, on the mechanical response and fracture process of RAC under compressive loading were investigated. The results indicate that, without considering the additional reduction in water-cement ratio due to the high-water absorption of RAs, the compressive strength of RAC decreases as the increase of RA replacement ratio, new-to-old mortar strength ratio, residual mortar content, and porosity with a maxium reduction of up to 15%—20%. This is mainly attributed to the role of the old interface of RAs and initial voids in guiding crack propagation.
Key words:  recycled aggregate    recycled aggregate concrete    compressive properties    cohesion    finite element analysis
发布日期:  2025-10-27
ZTFLH:  TU521.1  
基金资助: 国家自然科学基金(52478246;52372023);国家重点研发项目(2020YFC1909902)
通讯作者:  *詹炳根,博士,合肥工业大学土木与水利工程学院教授、博士研究生导师。目前主要从事土木工程材料等方面的研究工作。bgzhan@hfut.edu.cn   
作者简介:  付宇,合肥工业大学土木与水利工程学院硕士研究生,在余其俊教授的指导下进行研究。目前主要研究领域为土木工程材料。
引用本文:    
付宇, 高鹏, 詹炳根, 李景哲, 胡焱博, 余其俊. 非规则再生骨料建模方法及其对混凝土抗压性能的影响[J]. 材料导报, 2025, 39(20): 24100247-9.
FU Yu, GAO Peng, ZHAN Binggen, LI Jingzhe, HU Yanbo, YU Qijun. The Modeling Methods of Irregular Recycled Aggregates and Their Impact on the Compressive Strength of Concrete. Materials Reports, 2025, 39(20): 24100247-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100247  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24100247
1 Li J Z, Zhan B G, Gao P, et al. Construction and Building Materials, 2023, 401, 132899.
2 Hu Y B, Li J Z, Gao P, et al. Construction and Building Materials, 2024, 414, 134983.
3 Sagoe-Crentsil K K, Brown T, Taylor A H. Cement and Concrete Research, 2001, 31(5), 707.
4 Kheder G F, Al-Windawi S A. Materials and Structures, 2005, 38, 701.
5 Peng Y, Chu H, Pu J W. Advances in Materials Science and Engineering, 2016, 2016(1), 5075109.
6 Yu Y, Zheng Y, Zhao X Y. Construction and Building Materials, 2021, 268, 121116.
7 Bao J W, Li S G, Yu Z, et al. Journal of Building Engineering, 2021, 44, 103373.
8 Xu M C. Meso-mechanical properties of recycled concrete based on elliptical (spherical) random aggregate model. Master’s Thesis, Xi’an University of Technology, China, 2021(in Chinese).
徐梦婵. 基于椭圆(球)形随机骨料模型的再生混凝土细观力学性能研究. 硕士学位论文, 西安理工大学, 2021.
9 Wang Y, Peng Y, Kamel M M A, et al. International Journal for Numerical Methods in Engineering, 2020, 121(7), 1484.
10 Douglas J F, Garboczi E J. Advances in chemical physics, Wiley, New York, pp.85.
11 Xiong X Y, Xiao Q. Applied Sciences, 2019, 9(15), 2986.
12 Trawiński W, Tejchman J, Bobiński J. Engineering fracture mechanics, 2018, 189, 27.
13 Hu Y B, Gao P, Li J Z, et al. Bulletin of the Chinese Ceramic Society, 2024, 43(1), 276(in Chinese).
胡焱博, 高鹏, 李景哲, 等. 硅酸盐通报, 2024, 43(1), 276.
14 Ren D R. Study on the mesoscopic crack evolution law and constitutive model of concrete. Ph. D. Thesis, Beijing jiaotong University, China, 2022(in Chinese).
任大瑞. 混凝土细观裂纹演化规律及本构模型研究. 博士学位论文, 北京交通大学, 2022.
15 Cai Y Y, Fang H Y, Yu W, et al. Journal of Huaqiao University(Natural Science), 2019, 40(5), 567(in Chinese).
蔡园园, 房怀英, 余文, 等. 华侨大学学报(自然科学版), 2019, 40(5), 567.
16 Ritchie D W, Kemp G J L. Journal of Computational Chemistry, 1999, 20(4), 383.
17 Walaraven J C, Reinhardt H W. Heron, 1991, 26(1A), 23.
18 Huang Y J, Natarajan S, Zhang H, et al. Cement and Concrete Compo-sites, 2023, 143, 105270.
19 Zhang L F, Xie H, Chen Y W, et al. Science China Technological Sciences, 2022, 52, 1121(in Chinese)
张龙飞, 谢浩, 陈燕伟, 等. 中国科学, 技术科学, 2022, 52(7), 1121.
20 Xiong X Y, Xiao Q S. Journal of Hydraulic Engineering, 2019, 50(4), 448.
熊学玉, 肖启晟. 水利学报, 2019, 50(4), 448.
21 Yin A Y, Yang X H, Yang S F, et al. Engineering Fracture Mechanics, 2011, 78(12), 2414.
22 Wang X F, Yang Z J, Yates J R, et al. Construction and Building Materials, 2015, 75, 35.
[1] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[2] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[3] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[4] 康天蓓, 梁玉, 梁意博, 王凤池, 周静海. 基于多机器学习模型的再生混凝土抗盐冻性能预测[J]. 材料导报, 2025, 39(19): 24100032-11.
[5] 武军, 丁亚红, 郭猛, 郭书奇. 再生混凝土模型界面过渡区断裂行为与数值模拟[J]. 材料导报, 2025, 39(18): 24080157-8.
[6] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[7] 陈龙, 梁新星, 梁保青, 王云杰, 伍媛婷, 刘长青. 梯度氧化锆/氧化铝陶瓷高温应力的结构依赖性及优化设计[J]. 材料导报, 2025, 39(12): 24010215-7.
[8] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[9] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[10] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[11] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[12] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[13] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[14] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[15] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed