Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24100107-6    https://doi.org/10.11896/cldb.24100107
  金属与金属基复合材料 |
热障涂层的高温氧化及水氧腐蚀行为研究
乔立捷1,2, 袁帅3, 孟一凡3, 邱质彬2, 薛召露3, 张振亚3,*
1 浙江大学国家卓越工程师学院,杭州 310027
2 华电电力科学研究院有限公司,杭州 310030
3 安徽工业大学先进金属材料绿色制备与表面技术教育部重点实验室,安徽 马鞍山 243002
Performance of Thermal Barrier Coatings Under High-temperature Oxidative and Water-Oxygen Corrosive Environments
QIAO Lijie1,2, YUAN Shuai3, MENG Yifan3, QIU Zhibin2, XUE Zhaolu3, ZHANG Zhenya3,*
1 National Elite Institute of Engineering, Zhejiang University, Hangzhou 310027, China
2 Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310030, China
3 Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Ministry of Education), Anhui University of Technology, Ma’anshan 243002, Anhui, China
下载:  全 文 ( PDF ) ( 38696KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热障涂层主要应用在燃气轮机透平叶片、火焰筒、过渡段等高温热端部件的表面,具有良好的隔热性能,可有效地提高热端结构部件服役温度和延长服役寿命。随着氢燃料燃气轮机技术的发展,热障涂层在高温水氧环境中的腐蚀行为受到了广泛的关注。本工作分别利用大气等离子喷涂和超音速火焰喷涂制备了CoNiCrAlY粘结层,然后利用大气等离子喷涂在CoNiCrAlY粘结层表面制备了氧化钇部分稳定氧化锆(YSZ)顶层,获得了两种YSZ/CoNiCrAlY热障涂层体系,分别研究了热障涂层体系在室温至1 100 ℃的热循环氧化和在1 100 ℃的水氧腐蚀行为,利用XRD和SEM等表征了两种YSZ/CoNiCrAlY热障涂层体系的相结构演变和微观结构变化。结果表明,利用大气等离子喷涂制备的CoNiCrAlY粘结层具有较大的孔隙率和较大的应力应变容限,可延长YSZ/CoNiCrAlY热障涂层体系的热循环氧化寿命。YSZ在1 100 ℃水氧腐蚀环境中未发生相变,两种YSZ/CoNiCrAlY热障涂层体系腐蚀200 h后均未脱落,具有良好的耐水氧腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔立捷
袁帅
孟一凡
邱质彬
薛召露
张振亚
关键词:  热障涂层  热循环氧化  水氧腐蚀  微观结构    
Abstract: Thermal barrier coatings are mainly used on the surface of high-temperature hot end components such as turbine blades, flame tubes, and transition sections of gas turbines, which can effectively improve the service temperature and extend the service life of hot end components due to excellent thermal insulation performance. With the development of hydrogen fuel gas turbine technology, the corrosion behavior of thermal barrier coatings has received widespread attention under high-temperature water-oxygen environments. In this work, the CoNiCrAlY bond coating was prepared using atmospheric plasma spraying and supersonic flame spraying, and then the YSZ top coating was prepared on the surface of the CoNiCrAlY bond coating using atmospheric plasma spraying. Two kinds of YSZ/CoNiCrAlY thermal barrier coating systems were prepared, and the thermal cycling oxidation behavior of the thermal barrier coating systems from room temperature to 1 100 ℃ and the water-oxygen corrosion behavior at 1 100 ℃ were studied, respectively. The phase structure evolution and microstructure changes of the two kinds of YSZ/CoNiCrAlY thermal barrier coating systems were characterized using XRD and SEM. The results indicate that the CoNiCrAlY bond coating prepared by atmospheric plasma spraying has high porosity and large stress-strain tolerance, which prolongs the thermal cycling oxidation life of YSZ/CoNiCrAlY thermal barrier coating system. YSZ did not undergo phase transformation at 1 100 ℃ under water-oxygen corrosion environment, and both YSZ/CoNiCrAlY thermal barrier coating systems did not peel off after 200 h, demonstrating good resistance to water-oxygen corrosion.
Key words:  thermal barrier coating    thermal cycling oxidation    water-oxygen corrosion    microstructure
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TG174.4  
基金资助: 中国博士后科学基金(2024T170003)
通讯作者:  *张振亚,博士,副教授,教育部重点实验室主任助理,ISO/TC107及ISO/TC107/WG1注册专家。主要从事高温防护涂层的设计、制备及关键服役性能评价等方面的研究。zzhenya@ahut.edu.cn   
作者简介:  乔立捷,浙江大学国家卓越工程师学院博士研究生,华电电力科学研究院有限公司正高级工程师,目前主要研究方向为发电设备服役性能评估与延寿技术。
引用本文:    
乔立捷, 袁帅, 孟一凡, 邱质彬, 薛召露, 张振亚. 热障涂层的高温氧化及水氧腐蚀行为研究[J]. 材料导报, 2025, 39(22): 24100107-6.
QIAO Lijie, YUAN Shuai, MENG Yifan, QIU Zhibin, XUE Zhaolu, ZHANG Zhenya. Performance of Thermal Barrier Coatings Under High-temperature Oxidative and Water-Oxygen Corrosive Environments. Materials Reports, 2025, 39(22): 24100107-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100107  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24100107
1 Guo L, He W T, Chen W B, et al. Surface Science and Technology, 2023, 1, 6.
2 Wei Z Y, Meng G H, Chen L, et al. Journal of Advanced Ceramics, 2022, 11(7), 985.
3 Qiu S, Liu Y, Guo H, et al. Ceramics International, 2020, 46(4), 4824.
4 Vaen R, Bakan E, Mack D E, et al. Journal of Thermal Spray Technology, 2022, 31, 685.
5 Guo H B, Gong S K, Xu H B. Materials China, 2009, 28(9), 18 (in Chinese).
郭洪波, 宫声凯, 徐惠彬. 中国材料进展, 2009, 28(9), 18.
6 Zhou Y C, Yang L, Liu Z Y, et al. Materials China, 2020, 39(10), 707(in Chinese).
周益春, 杨丽, 刘志远, 等. 中国材料进展, 2020, 39(10), 707.
7 Padture N P. Nature Materials, 2016, 15(8), 804.
8 Cao X Q, Vaßen R, Stöver D. Journal of the European Ceramic Society, 2004, 24(1), 1.
9 Guo L, Li M Z, Ye F X. Ceramics International, 2016, 42(16), 7360.
10 Dai M Q, Song X M, Lin C C, et al. Journal of Advanced Ceramics, 2022, 11, 345.
11 Bakan E, Vaßen R. Journal of Thermal Spray Technology, 2017, 26, 992.
12 Zhang W W, Li G R, Zhang Q, et al. Journal of Thermal Spray Technology, 2018, 27, 1064.
13 Vaßen R, Cao X Q, Tietz F, et al. Journal of the American Ceramic Society, 2000, 83, 2023.
14 Zhu D M, Nesbitt JA, Barrett CA, et al. Journal of Thermal Spray Technology, 2004, 13, 84.
15 Zhao Z F, Chen H, Xiang H M, et al. Journal of Advanced Ceramics, 2020, 9, 303.
16 Qu Z X, Wan C L, Pan W, et al. Chemistry of Materials, 2007, 19, 4913.
17 Guo L, Li B W, Cheng Y X, et al. Journal of Advanced Ceramics, 2022, 11, 454.
18 Xue Y, Zhao X Q, An Y L, et al. Journal of Advanced Ceramics, 2022, 11, 615.
19 Sun Y N, Xiang H M, Dai F Z, et al. Journal of Advanced Ceramics, 2021, 10, 596.
20 Li F, Zhou L, Liu J X, et al. Journal of Advanced Ceramics, 2019, 8, 576.
21 National Development and Reform Commission, National Energy Administration. The Medium and Long Term Plan for the Development of Hydrogen Energy Industry (2021—2035), 2022(in Chinese)
国家发展改革委, 国家能源局. 氢能产业发展中长期规划(2021—2035年), 2022.
22 Li L X, Liu X Y, Zeng G F, et al. Thermal Power Generation, 2023, 52(12), 70(in Chinese).
李立新, 刘星雨, 曾过房, 等. 热力发电, 2023, 52(12), 70.
23 Guo X, Schober T. Journal of the American Ceramic Society, 2010, 87(4), 746.
24 Wang S, Zhong S, Ouyang X, et al. Materials Science & Engineering B, 2009, 162(3), 200.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[3] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[4] 王喆锦, 王丽爽, 麻忠宇, 董会, 姚建洮, 周勇. 高温热暴露对等离子喷涂YSZ孔隙结构和力学性能的影响[J]. 材料导报, 2025, 39(4): 23110217-7.
[5] 张业飞, 江海涛, 田世伟, 张思远, 李冲. TiAl基合金高温防护及热障涂层体系研究进展[J]. 材料导报, 2025, 39(4): 24020147-10.
[6] 温强, 李向成, 花银群, 关庆丰, 蔡杰. 强流脉冲电子束表面改性技术及其在热障涂层改性中的研究进展[J]. 材料导报, 2025, 39(3): 23090070-11.
[7] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[8] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[9] 龙海洋, 王涛, 曹俊, 李艳辉, 马汝成, 李晓硕, 王博超, 刘志存, 方姣. LiSbO3掺杂对KNN基无铅压电陶瓷结构及压电性能的影响[J]. 材料导报, 2025, 39(23): 24110207-9.
[10] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[11] 刘蕾, 姚勇, 张玲玲, 唐子歆, 仇为波. 风化软岩弃渣在道路基层的应用研究[J]. 材料导报, 2025, 39(22): 25020177-9.
[12] 鞠鹏, 雷宝锋, 姬语洋, 樊恒辉. 聚丙烯纤维对流态固化土流变及力学性能的影响[J]. 材料导报, 2025, 39(20): 24080171-8.
[13] 张萌, 窦智, 王泽平, 温勇. 碱激发矿渣/粉煤灰沙漠砂混凝土的基本力学性能及微观特性[J]. 材料导报, 2025, 39(18): 24040241-11.
[14] 王国辰, 胡长明, 武智鹏, 李靓, 樊恒辉, 何小文. 电石渣碱激发钢渣-矿渣胶凝材料的性能与水化机理[J]. 材料导报, 2025, 39(18): 24090103-8.
[15] 李祥文, 李昆锋, 武晨浩, 费志方, 张震, 孙文彩, 杨自春. 不同碱性催化剂对疏水SiO2气凝胶性能的影响[J]. 材料导报, 2025, 39(17): 24080159-5.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed