Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24090168-7    https://doi.org/10.11896/cldb.24090168
  金属与金属基复合材料 |
基于第一性原理的间隙原子掺杂MgAlLiSbAg轻质高熵合金的结构和
性能研究
吴慧淋1, 张宇飞1, 董权1, 张静1,2,*
1 重庆大学材料科学与工程学院,重庆 400044
2 重庆大学国家镁合金材料工程技术研究中心,重庆 400044
Structure and Properties of Interstitial Atom-doped MgAlLiSbAg Lightweight High-entropy Alloys Based on First-principles Study
WU Huilin1, ZHANG Yufei1, DONG Quan1, ZHANG Jing1,2,*
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 23238KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用特殊准随机结构建模与第一性原理计算分析了间隙原子C、O掺杂对等物质的量比MgAlLiSbAg轻质高熵合金相稳定性和力学性能的影响。结果表明,MgAlLiSbAg倾向于形成单相BCC固溶体结构,较高浓度(4.76%,原子分数)的O原子掺杂能保持相结构稳定,而较高浓度的C原子或较低浓度 (2.44%)的 O原子掺杂则诱导了合金从BCC相结构到FCC相结构的转变。C或较低浓度O 的掺杂会降低MgAlLiSbAg合金的强度、塑性,而BCC结构中掺杂较高浓度的O能够实现合金强塑性的协同提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴慧淋
张宇飞
董权
张静
关键词:  轻质高熵合金  间隙原子  第一性原理计算  相稳定性  力学性能    
Abstract: The effects of C and O interstitial atoms on the phase stability and mechanical properties of the equimolar ratio MgAlLiSbAg lightweight high-entropy alloy were investigated using special quasi-random structure modeling and first-principles calculations. The results show that MgAlLiSbAg tends to form stable BCC solid solution structure. Doping of O atoms at a higher concentration (4.76%, atomic fraction) helps to maintain the BCC structure stability, while doping of C atoms at a higher concentration or O atoms at a lower concentration (2.44%) will induce phase transformation from BCC structure to FCC structure. Doping with C or lower concentrations of O decrease the strength and ductility of the MgAlLiSbAg HEA, while the strength and plasticity of the alloy can be synergistically improved by doping higher concentrations of O atoms in BCC structure.
Key words:  lightweight high-entropy alloys    interstitial atoms    first principles calculation    phase stability    mechanical property
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  V252  
基金资助: 中国航空科学基金(2023Z0530Q9002);重庆英才计划(cstc2024ycjh-bgzxm0066)
通讯作者:  *张静,博士,重庆大学二级教授、博士研究生导师,主要从事先进轻合金材料的基础研究和应用开发。jingzhang@cqu.edu.cn   
作者简介:  吴慧淋,重庆大学材料科学与工程学院硕士研究生,师从张静教授,主要研究方向为计算材料学。
引用本文:    
吴慧淋, 张宇飞, 董权, 张静. 基于第一性原理的间隙原子掺杂MgAlLiSbAg轻质高熵合金的结构和
性能研究[J]. 材料导报, 2025, 39(22): 24090168-7.
WU Huilin, ZHANG Yufei, DONG Quan, ZHANG Jing. Structure and Properties of Interstitial Atom-doped MgAlLiSbAg Lightweight High-entropy Alloys Based on First-principles Study. Materials Reports, 2025, 39(22): 24090168-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090168  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24090168
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Huang D, Zhuang Y. Journal of Materials Science & Technology, 2022, 108(13), 125.
3 Muangtong P, Rodchanarowan A, Chaysuwan D, et al. Corrosion Science, 2020, 172, 108740.
4 Wu Q, Wang Z, He F, et al. Journal of Materials Science & Technology, 2022, 128, 71.
5 Miracle D B, Senkov O N. Acta Materialia, 2017, 122, 448.
6 Jia Y f, Wang G, Jia Y D, et al. Materials Reports, 2020, 34(17), 17003(in Chinese).
贾岳飞, 王刚, 贾延东, 等. 材料导报, 2020, 34(17), 17003.
7 Hou C H, ZHou N, Liu Z Y, et al. Materials Research and Application, 2022, 16(6), 959(in Chinese).
侯成浩, 周楠, 刘贞阳, 等. 材料研究与应用, 2022, 16(6), 959.
8 Li M, Bo Y C, Zhang J, et al. Materials Reports, 2020, 34(21), 21125(in Chinese).
李萌, 杨成博, 张静, 等. 材料导报, 2020, 34(21), 21125.
9 Li Z X, Zhu Y Y, Cheng X, et al. Journal of Materials Engineering, 2024, 52(1), 137(in Chinese).
李子兴, 朱言言, 程序, 等. 材料工程, 2024. 52(1), 137.
10 Svoboda J, Ecker W, Razumovskiy V I, et al. Progress in Materials Science, 2019, 101, 172.
11 Wang Z, Baker I, Cai Z, et al. Acta Materialia, 2016, 120, 228.
12 Chen L B, Wei R, Tang K, et al. Materials Science and Engineering:A, 2018, 716, 150.
13 Guo L, Ou X, Ni S, et al. Materials Science and Engineering:A, 2019, 746, 356.
14 Lei Z, Liu X, Wu Y, et al. Nature, 2018, 563(7732), 546.
15 Chen Y, Li Y, Cheng X, et al. Materials Letters, 2018, 228, 145.
16 Gong J, Li Y, Song X, et al. Vacuum, 2024, 219, 112754.
17 Dong Q, Li M, Liu X, et al. Intermetallics, 2024, 164, 108089.
18 Jeong I S, Lee J H. Materials & Design, 2023, 227, 111709.
19 Hashimoto H, Isobe S, Hashimoto N, et al. Journal of Alloys and Metallurgical Systems, 2023, 4, 100037.
20 Sorkin V, Yu Z G, Chen S, et al. Scientific Reports, 2023, 13(1), 22549.
21 Li M. Study on microstructure and properties of AlLiMgScTi system lightweight high entropy alloys prepared by mechanical alloying. Master's Thesis, Chongqing University, China, 2020(in Chinese).
李萌. 机械合金化AlLiMgScTi 系轻质高熵合金 组织与性能的研究. 硕士学位论文, 重庆大学, 2020.
22 Zunger A, Wei S H, Ferreira L, et al. Physical Review Letters, 1990, 65(3), 353.
23 Van D W A, Tiwary P, De J M, et al. Calphad, 2013, 42, 13.
24 Kresse G, Furthmüller J. Physical Review B, 1996, 54(16), 11169.
25 Kresse G, Joubert D. Physical Review B, 1999, 59(3), 1758.
26 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
27 Huang Z, Liu G, Zhang B, et al. Physics Letters A, 2020, 384(33), 126797.
28 Li W, Gao Q, Ren J, et al. Journal of Materials Research and Technology, 2024, 29, 376.
29 Huang S, Li X, Huang H, et al. Materials Chemistry and Physics, 2018, 210, 37.
30 Nong Z, Zhu J, Zhao R. Intermetallics, 2017, 86, 134.
31 Zhou L, Su K, Wang Y, et al. Journal of Alloys and Compounds, 2014, 596, 63.
32 Jiang D Y, Ouyang C Y, Liu S Q. Fusion Engineering and Design, 2016, 106, 34.
33 Li X, Tu X Q, Liu B Q, et al. Journal of Alloys and Compounds, 2017, 706, 260.
34 Fadila B, Ameri M, Bensaid D, et al. Journal of Magnetism and Magnetic Materials, 2018, 448, 208.
35 Gaillac R, Pullumbi P, Coudert F X. Journal of Physics:Condensed Matter, 2016, 28(27), 275201.
36 Hu C, Zhang J, Zhang Y, et al. Materials & Design, 2023, 225, 111571.
37 Shang J X, Yu T B. Acta Physica Sinica, 2009, 58(2), 1179(in Chinese).
尚家香, 于潭波. 物理学报, 2009, 58(2), 1179.
38 Liu C, Cui J, Cheng Z, et al. Advanced Materials, 2023, 35(13), 2209941.
39 Zhang S, Wang G. Materials Today Communications, 2022, 32, 104059.
40 Sunmonu R S, Akinlami J O, Dare E O, et al. Computational Condensed Matter, 2019, 21, e00412.
41 Tian F, Delczeg L, Chen N, et al. Physical Review B, 2013, 88(8), 085128.
42 Hou M H. Experimental and first-principles study on the strength and ductility of O/Si solid solution strengthened Ti alloys. Master's Thesis, Xi’an University of Science and Technology, China, 2023(in Chinese).
候鸣浩. O/Si固溶对Ti合金强塑性影响的实验和第一性原理研究. 硕士学位论文, 西安理工大学, 2023.
43 Hu J, Zhang J, Xiao H, et al. Journal of Alloys and Compounds, 2021, 879, 160482.
44 Wen S M, Yao S W, Zhao C W, et al. Chinese Journal of Computational Physics, 2020, 37(1), 119(in Chinese).
温淑敏, 姚世伟, 赵春旺, 等. 计算物理, 2020, 37(1), 119.
45 Baker, Thomas A, Friend, et al. Journal of the American Chemical Society, 2009, 131(12), 4551.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[11] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[12] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[13] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[14] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[15] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed