Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24090136-7    https://doi.org/10.11896/cldb.24090136
  无机非金属及其复合材料 |
NaA型分子筛在废锂电池模拟浸出液中的钴锂金属离子分离和再生应用性能
刘翔宇, 程前*, 王越, 王永相
厦门理工学院环境科学与工程学院,福建 厦门 361024
The Application Performance of NaA Zeolite for the Separation and Regeneration of Co2+ and Li+ from the Simulated Leaching Solution of Spent Lithium-ion Batteries
LIU Xiangyu, CHENG Qian*, WANG Yue, WANG Yongxiang
School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, China
下载:  全 文 ( PDF ) ( 11128KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以NaA型分子筛作为吸附材料,对废锂电池模拟浸出液中钴锂金属离子进行选择性分离和再生。考察了NaA型分子筛对Co2+的选择性吸附行为和机理,并对吸附前后NaA型分子筛形貌和结构进行了表征。实验结果表明,NaA型分子筛最佳投加量随着模拟浸出液中Co2+、Li+初始摩尔浓度的增加而增大。在Co2+、Li+初始摩尔浓度均为 0.05 mol/L,NaA型分子筛投加量为35 g/L、溶液初始pH值为5、吸附温度为60 ℃、吸附时间为30 min时,模拟浸出液中Co2+、Li+吸附率分别为95.8%和2.5%,表明 NaA 型分子筛能够有选择地吸附模拟浸出液中的Co2+,从而实现溶液中 Co2+与Li+的有效分离。NaA型分子筛对Co2+的吸附行为遵循Langmuir等温吸附模型及准二级动力学,最大吸附容量可达108.7 mg/g。Co2+被吸附并结合到NaA型分子筛表面,吸附机理主要为离子交换,且该过程对NaA型分子筛的形貌和结构无显著影响。模拟浸出液中分离出的Li+以及经解吸后所得的Co2+可分别再生成纯度为97.5%的Li2CO3和99.2%的CoCO3,其产率分别为95.2%和96.1%。本研究可为NaA型分子筛在废锂电池中金属离子分离回收和再利用的应用提供新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘翔宇
程前
王越
王永相
关键词:  废锂电池  NaA型分子筛  钴锂分离  回收  再生    
Abstract: The utilization of NaA zeolite as an adsorbent for the selective separation and regeneration of Co2+ and Li+ from a simulated leaching solution of spent lithium-ion batteries has been explored. The selective adsorption behavior and mechanism of the NaA zeolite towards Co2+ were investigated. The morphology and structure of the NaA zeolite before and after adsorption were characterized using SEM-EDS, FTIR and XRD techniques. Experimental results indicated that the optimal dosage of NaA zeolite increased with the increase in the initial molar concentration of Co2+ and Li+ in the mixed solution. Under the condition of an initial molar concentration of 0.05 mol/L for both Co2+ and Li+, a NaA zeolite dosage of 35 g/L, an initial solution pH of 5, an adsorption temperature of 60 ℃, and the adsorption time was 30 min, the adsorption efficiencies of Co2+ and Li+ were 95.8% and 2.5%, respectively. This underscores the remarkable ability of NaA zeolite to selectively capture Co2+ from the simulated leaching solution, thereby facilitating the effective separation of Co2+ and Li+. The adsorption behavior of Co2+ onto NaA zeolite was found to adhere to the Langmuir isotherm model and pseudo-second-order kinetics, with a maximum adsorption capacity of 108.7 mg/g. The mechanism underlying this process was primarily ion exchange, where Co2+ was adsorbed and bound to the surface of the zeolite without altering its morphology or structure. Notably, the separated Li+ from the simulated leaching solution and the desorbed Co2+ could be successfully regenerated into Li2CO3 with a purity of 97.5% and CoCO3 with a purity of 99.2%, yielding production rates of 95.2% and 96.1%, respectively. This study provides new insights into separation, recovery and reuse of metal ions from spent lithium-ion batteries using NaA zeolite.
Key words:  spent lithium-ion battery    NaA zeolite    cobalt and lithium separation    recycling    regeneration
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  X758  
基金资助: 福建省自然科学基金(2021J011179)
通讯作者:  *程前,厦门理工学院环境科学与工程学院高级实验师、硕士研究生导师。目前主要从事废旧锂离子电池绿色循环应用、固废处理及其资源化等方面的研究。chengq@xmut.edu.cn   
作者简介:  刘翔宇,厦门理工学院环境科学与工程学院硕士研究生,在程前导师的指导下进行研究。目前主要研究领域为废旧锂离子电池中有价金属的分离与再生。
引用本文:    
刘翔宇, 程前, 王越, 王永相. NaA型分子筛在废锂电池模拟浸出液中的钴锂金属离子分离和再生应用性能[J]. 材料导报, 2025, 39(22): 24090136-7.
LIU Xiangyu, CHENG Qian, WANG Yue, WANG Yongxiang. The Application Performance of NaA Zeolite for the Separation and Regeneration of Co2+ and Li+ from the Simulated Leaching Solution of Spent Lithium-ion Batteries. Materials Reports, 2025, 39(22): 24090136-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090136  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24090136
1 Jin S, Mu D Y, Lu Z, et al. Journal of Cleaner Production, 2022, 340, 130535.
2 Zheng S, Chen T, Fang Y J, et al. Resources Chemicals and Materials, 2024, 3(3), 188.
3 Cao Y P, Zhang Y B, Duan J G, et al. China Nonferrous Metallurgy, 2022, 51(5), 23 (in Chinese).
曹远鹏, 张艺博, 段建国, 等. 中国有色冶金, 2022, 51(5), 23.
4 Sun Y, Zhu M Y, Yao Y L, et al. Separation and Purification Technology, 2020, 237, 116325.
5 Zhou F Y, Qu X, Wu Y X, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(3), 1287.
6 Roy J J, Cao B, Madhavi S. Chemosphere, 2021, 282, 130944.
7 Jung J C Y, Sui P C, Zhang J J. Journal Energy Storage, 2021, 35, 102217.
8 Luo Y, Yin C Z, Ou L M, et al. Green Chemistry, 2022, 24(17), 6562.
9 Nguyen V, Lee J C, Jeong J, et al. Metals and Materials International, 2014, 20(2), 357.
10 Kang J, Senanayake G, Sohn J, et al. Hydrometallurgy, 2010 100(3-4), 168.
11 Chen X P, Xu B, Zhou T, et al. Separation and Purification Technology, 2015, 144, 197.
12 Iizuka A, Yamashita Y, Nagasawa H, et al. Separation and Purification Technology, 2013, 113, 33.
13 Wang B Y, Liu F, Zhang F, et al. Chemical Engineering Journal, 2022, 430, 132924.
14 Nguyen V N H, Lee M S. Physicochemical Problems of Mineral Processing, 2021, 57(4), 1.
15 Arora R. Materials Today, 2019, 18, 4745.
16 Liu Y D, Ye C P, Han L Y, et al. Environmental Protection of Chemical Industry, 2023, 43(6), 813 (in Chinese).
刘耀东, 叶翠平, 韩丽媛, 等. 化工环保, 2023, 43(6), 813.
17 Fan X Y, Xie S C, Liu H, et al. Environmental Science and Technology, 2019, 42(5), 46 (in Chinese).
范先媛, 谢升昌, 刘红, 等. 环境科学与技术, 2019, 42(5), 46.
18 Zhang F F, Shang H, Wang L, et al. Advanced Material, 2021, 33(37), 2100866.
19 Lin Z X, Yuan P, Yue Y Y, et al. Science of the Total Environment, 2020, 698, 134287.
20 Zhang W Z, Xu F, Wang Y F, et al. Chemical Engineering Journal, 2014, 255, 316.
21 Wang C, Xiong C, He Y L, et al. Chemical Engineering Journal, 2021, 415, 128923.
22 Cheng Q, Marchetti B, Chen M F, et al. Journal of Material Cycles and Waste Management, 2023, 25(3), 1534.
23 Majd M M, Kordzadeh K V, Ghalandari V, et al. Science of the Total Environment, 2022, 812, 151334.
24 Ao X, Liu H, Wang Q, et al. Water Treatment Technology, 2017, 43(9), 62 (in Chinese).
敖翔, 刘红, 汪茜, 等. 水处理技术, 2017, 43(9), 62.
25 Nightingale Jr E R. Journal of Chemical Physics, 1959, 63(9), 1381.
26 Chen Y, Armutlulu A, Sun W L, et al. Science of the Total Environment, 2020, 714, 136724.
27 Feng C J, Wang C. Journal of Jilin University (Science Edition), 2003(4), 543 (in Chinese).
冯长君, 王超. 吉林大学学报(理学版), 2003(4), 543.
28 Lyu F, Niu S L, Wang L, et al. Journal of Hazardous Materials, 2021, 406, 124678.
29 Nibou D, Amokrane S. Journal of Molecular Liquids, 2021, 323, 114642.
30 Zavareh S, Farrokhzad Z, Darvishi F. Ecotoxicology and Environmental Safety, 2018, 155, 1.
31 Surya Murali R, Ismail A F, Rahman M A, et al. Separation and Purification Technology, 2014, 129, 1.
32 Zou W H, Bai H J, Zhao L, et al. Journal of Radioanalytical and Nuclear Chemistry, 2011, 288(3), 779.
33 Xu R R, Pang W Q, Huo Q S, et al. Molecular sieve and porous material chemistry, Science Press, China, 2014, pp.433.
徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学, 科学出版社, 2014, pp.433.
34 Nibou D, Mekatel H, Amokrane S, et al. Journal of Hazardous Materials, 2010, 173(1/3), 637.
35 Cui J X, Wang L Y, Li Y, et al. Inorganic Chemicals Industry, 2022, 54(4), 135 (in Chinese).
崔家新, 王连勇, 李尧, 等. 无机盐工业, 2022, 54(4), 135.
36 Nibou D, Khemaissia S, Amokrane S, et al. Chemical Engineering Journal, 2011, 172(1), 296.
[1] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[2] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[3] 邹桂莲, 焦有晴, 张园, 虞将苗, 韩骜. 基于激光共聚焦扫描显微镜的新旧沥青融合及均质化程度研究[J]. 材料导报, 2025, 39(5): 24010257-6.
[4] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[5] 朱元浪, 张恒武, 吕凯越, 杨鄯旭, 张式玉, 王史以诺, 谢柏军, 高嵩. 基于逾渗理论的实海环境再生混凝土抗Cl-渗透特性研究[J]. 材料导报, 2025, 39(23): 24100208-8.
[6] 张万国, 万贵稳, 乔元辉, 张吉哲, 熊远顺. 生物油基再生剂对老化沥青流变性能恢复规律研究[J]. 材料导报, 2025, 39(22): 24110036-8.
[7] 王真帅, 李继文, 张欣, 李顺杰, 刘伟, 徐流杰. 激光选区熔化制备M50NiL轴承钢回收粉末特性的变化[J]. 材料导报, 2025, 39(22): 24050187-7.
[8] 付宇, 高鹏, 詹炳根, 李景哲, 胡焱博, 余其俊. 非规则再生骨料建模方法及其对混凝土抗压性能的影响[J]. 材料导报, 2025, 39(20): 24100247-9.
[9] 贾有东, 刘剑雄, 李欣治, 姚思博, 李正芳, 曾家兴. 基于红外光图像的报废汽车非磁金属回收利用技术研究[J]. 材料导报, 2025, 39(20): 24110020-8.
[10] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[11] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[12] 康天蓓, 梁玉, 梁意博, 王凤池, 周静海. 基于多机器学习模型的再生混凝土抗盐冻性能预测[J]. 材料导报, 2025, 39(19): 24100032-11.
[13] 林俊涛, 钟超, 王宗瑞, 徐方, 朱晓斌. 地聚物乳化沥青冷再生混合料的强度发展特征与性能研究[J]. 材料导报, 2025, 39(18): 24050037-6.
[14] 高英力, 王蒴, 朱俊材, 李岳林, 田维伟, 詹明涛, 黄河. 基于分子模拟的增塑剂对沥青再生机理研究[J]. 材料导报, 2025, 39(18): 24060193-9.
[15] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed