Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24090134-8    https://doi.org/10.11896/cldb.24090134
  无机非金属及其复合材料 |
生物质衍生多孔碳基吸波材料的研究进展
武志红1,*, 许怡凡1, 李鹏2, 齐珺2, 常吉进1, 牛丹1,3, 任安文1
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 陕西华秦科技实业股份有限公司,西安 710119
3 蒙娜丽莎集团股份有限公司广东省大尺寸陶瓷薄板企业重点实验室,广东 佛山 528211
Advances in Biomass-derived Porous Carbon-based Microwave Absorbing Materials
WU Zhihong1,*, XU Yifan1, LI Peng2, QI Jun2, CHANG Jijin1, NIU Dan1,3, REN Anwen1
1 School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 Shaanxi Huaqin Technology Industry Co.,Ltd., Xi’an 710119, China
3 Guangdong Provincial Key Laboratory of Large Ceramic Plates, Monalisa Group Co.,Ltd., Foshan 528211, Guangdong, China
下载:  全 文 ( PDF ) ( 47599KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着电子设备在通信、军事、医疗、交通运输等行业的广泛应用,电磁辐射污染问题日益加剧,对高效微波吸收材料的需求越来越多。生物质多孔碳基材料结合了吸波和多孔结构的优点,以其超低密度、高比表面积和强介电损耗特性,在微波吸收领域取得了很大的进展。本文阐述了生物质衍生碳材料的特点,系统讨论了多孔结构对材料微波吸收性能的影响,并总结了用于吸波领域的不同生物质材料来源以及不同衰减机制的生物质碳基复合材料,为设计优化多种结构的吸波材料,实现吸波性能的提高提供参考,最后展望了生物质衍生碳基吸波材料的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武志红
许怡凡
李鹏
齐珺
常吉进
牛丹
任安文
关键词:  生物质多孔碳  电磁波吸收  多孔结构  复合材料    
Abstract: With the wide application of electronic devices in communication, military, medical, transportation and other industries, the problem of electromagnetic radiation pollution is increasing, and there is a growing demand for efficient microwave absorbing materials. Biomass-derived porous carbon-based materials combine the advantages of wave absorption and porous structure, and have made great progress in the field of microwave absorption with their ultra-low density, high specific surface area, and strong dielectric loss. This paper describes the characteristics of biomass-derived carbon materials, systematically discusses the influence of porous structure on the microwave absorption performance of the materials, and summarizes the different biomass material sources used in the field of wave absorption, and biomass carbon-based composites with different attenuation mechanisms. It aims at providing a reference for designing and optimizing a variety of structural wave-absorbing materials to achieve improved wave-absorbing performance, and ends with an outlook of the application prospects of the biomass-derived carbon-based microwave absorbing materials.
Key words:  biomass porous carbon    electromagnetic wave absorption    porous structure    composite
发布日期:  2025-10-27
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51974218);广东省大尺寸陶瓷薄板企业重点实验室开放课题(KFKT2023002);山西舜王建筑工程有限公司横向项目(20230460);西安建筑科技大学基础研究基金(JC1406)
通讯作者:  *武志红,西安建筑科技大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事生物质吸波材料、高温结构材料等方面的研究工作。zhihong@xauat.edu.cn   
引用本文:    
武志红, 许怡凡, 李鹏, 齐珺, 常吉进, 牛丹, 任安文. 生物质衍生多孔碳基吸波材料的研究进展[J]. 材料导报, 2025, 39(20): 24090134-8.
WU Zhihong, XU Yifan, LI Peng, QI Jun, CHANG Jijin, NIU Dan, REN Anwen. Advances in Biomass-derived Porous Carbon-based Microwave Absorbing Materials. Materials Reports, 2025, 39(20): 24090134-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090134  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24090134
1 Zhao J, Wang H, Chen M, et al. Journal of Colloid and Interface Science, 2023, 639, 160.
2 Zheng H, Nan K, Wang W, et al. Journal of Colloid and Interface Science, 2024, 653, 930.
3 Huang Z, Chen H, Huang Y, et al. Advanced Functional Materials, 2018, 28(2), 1704363.
4 Guan H T, Wang Q Y, Wu X F, et al. Composites Part B, 2021, 207, 108562.
5 Xu X F, Shi S H, Tang Y L, et al. Advanced Science, 2021, 8(5), 2002658.
6 Ding C, Shao C, Wu S, et al. Carbon, 2023, 213, 118279.
7 Wei Y P, Zhu J Z, Lin J P, et al. Materials Reports, 2021, 35(15), 15205(in Chinese).
魏玉鹏, 朱俊志, 蔺景鹏, 等. 材料导报, 2021, 35(15), 15205.
8 Molaiyan P, Dos Reis G S, Karuppiah D, et al. Batteries, 2023, 9(2), 116.
9 Zhong L, Qiu X, Yang S, et al. Energy Storage Materials, 2023, 61, 102887.
10 Cheng Y, Li Z, Li Y, et al. Carbon, 2018, 127, 643.
11 Wu F, Liu Z H, Xiu T, et al. Composites Part B, 2021, 215, 108814.
12 Dong Y Y, Zhu X J, Pan F, et al. Chemical Engineering Journal, 2021, 426, 131272.
13 Liu Y, Chen Z, Xie W H, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(5), 5318.
14 Wang Y, Gao X, Zhou H W, et al. Powder Technology, 2019, 345, 370.
15 Yan L, Xiang J, Li Y, et al. Journal of Materials Research and Technology, 2023, 24, 9780.
16 Mou P P, Zhao J C, Wang G Z, et al. Chemical Engineering Journal, 2022, 437, 135285.
17 Cheng Y, Cao J, Li Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(1), 1427.
18 Wu Z H, Meng Z Z, Yao C, et al. Materials Chemistry and Physics, 2022, 275, 125246.
19 Aslam M A, Ding W, ur Rehman S, et al. Applied Surface Science, 2021, 543, 148785.
20 Qiu X, Wang L, Zhu H, et al. Nanoscale, 2017, 9(22), 7408.
21 Li Z, Lin H, Ding S, et al. Carbon, 2020, 167, 148.
22 Zhou P, Wang X, Wang L, et al. Journal of Alloys and Compounds, 2019, 805, 1071.
23 Wang L, Zhou P, Guo Y, et al. RSC Advances, 2019, 9(17), 9718.
24 Wang M, Pan H, Xu L, et al. Materials Science and Engineering B, 2024, 307, 117509.
25 Zhou X, Jia Z, Feng A, et al. Composites Communications, 2020, 21, 100404.
26 Wu Z, Chang J, Guo X, et al. Carbon, 2023, 215, 118415.
27 Wang S, Li Q, Hu K, et al. Applied Surface Science, 2021, 544, 148891.
28 Zhao H, Seow J Z Y, Cheng Y, et al. Ceramics International, 2020, 46(10), 15447.
29 Cheng G, Pan F, Zhu X, et al. Composites Communications, 2021, 27, 100867.
30 Fang X, Li W, Chen X, et al. Carbon, 2022, 198, 70.
31 Gu Y, Dai P, Zhang W, et al. SN Applied Sciences, 2021, 3, 1.
32 Huang L, Li J J, Wang Z J, et al. Carbon, 2019, 143, 507.
33 Zhang C, Zhao K H, Li X A, et al. Journal of Materials Science Materials in Electronics, 2020, 31, 8900.
34 Singh S K, Prakash H, Akhtar M, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(4), 5381.
35 Jiao Z, Hu J, Ma M, et al. Journal of Materials Science Materials in Electronics, 2023, 34(6), 536.
36 Fillat A, Martínez J, Valls C, et al. Cellulose, 2018, 25, 6093.
37 Geng H, Zhang X, Xie W, et al. Journal of Colloid and Interface Science, 2022, 609, 33.
38 Huang Y, Xie A, Seidi F, et al. Chemical Engineering Journal, 2021, 423, 130307.
39 Wu Z H, Yao C, Meng Z Z, et al. Journal of the Chinese Ceramic Society, 2022, 50(7), 2056.
武志红, 姚程, 蒙真真, 等. 硅酸盐学报, 2022, 50(7), 2056.
40 Zhao H Q, Cheng Y, Zhang Z, et al. Carbon, 2021, 173, 501.
41 Sun X, Yang M, Yang S, et al. Small, 2019, 15(43), 1902974.
42 Wu Z, Tian K, Huang T, et al. ACS Applied Materials & Interfaces, 2018, 10(13), 11108.
43 Gong X, Li M, Ge Y, et al. Materials Today Communications, 2023, 37, 107093.
44 Xu G, Li L, Shen Z, et al. Journal of Alloys and Compounds, 2015, 629, 36.
45 Zhao H, Cheng Y, Lv H, et al. Carbon, 2019, 142, 245.
46 Zhou X F, Jia Z R, Feng A L, et al. Composites Part B, 2020, 192, 107980.
47 Chang Q, Xie Z, Long C, et al. Ceramics International, 2023, 49(16), 27015.
48 Wei Y, Liu H, Liu S, et al. Composites Communications, 2018, 9, 70.
49 Hu P, Dong S, Li X, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(27), 10230.
50 Fan Y, Li Y, Yao Y, et al. Applied Surface Science, 2020, 534, 147510.
51 Wang H, Meng F, Li J, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(9), 11801.
52 Negi P, Joshi S K, Baskey H B, et al. Materials Advances, 2022, 3(5), 2533.
53 Xu B, He Q, Wang Y, et al. Ceramics International, 2023, 49(18), 30125.
54 Yang Q X, Yang W T, Shi Y Y, et al. Journal of Materials Science Materials in Electronics, 2019, 30, 1374.
55 Xu C, Ma L, Li H, et al. Materials Research Bulletin, 2024, 176, 112805.
56 Peymanfar R, Moradi F. Nanotechnology, 2020, 32(6), 065201.
57 Zhang G, Liu H, Wen Y, et al. Materials Research Bulletin, 2024, 169, 112499.
58 Pan F, Liu Z, Deng B, et al. Nano-Micro Letters, 2021, 13, 1.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[3] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[4] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[5] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[6] 黄昆鹏, 张雨波, 杨楠. 类魔方式的多孔超材料设计及可调控弹性模量的研究[J]. 材料导报, 2025, 39(7): 23120207-9.
[7] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[8] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[9] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[10] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[11] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[12] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[13] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[14] 李曈, 王庆贺, 任庆新. 钢渣骨料/粉煤灰对ECC力学与介质传输性能的影响机理[J]. 材料导报, 2025, 39(19): 24060141-7.
[15] 李秋生, 李安敏, 眭清平. 原位反应法制备ZrB2/Al-12Si复合材料的显微组织及高温蠕变性能[J]. 材料导报, 2025, 39(19): 24070139-9.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed