Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24090156-8    https://doi.org/10.11896/cldb.24090156
  无机非金属及其复合材料 |
基于天然黄铁矿构筑自修复循环催化剂及其催化性能研究
王异1,2,3, 覃佳勇2, 陆胜达2, 黄旭东2, 黄在银2,*, 张飞武1,*
1 中国科学院地球化学研究所关键矿产成矿与预测全国重点实验室,贵阳 550081
2 广西民族大学化学化工学院,南宁 530006
3 中国科学院大学地球与行星科学学院,北京 100049
Study on the Construction of Self-healing Recyclable Catalysts Based on Natural Pyrite and Their Catalytic Performance
WANG Yi1,2,3, QIN Jiayong2, LU Shengda2, HUANG Xudong2, HUANG Zaiyin2,*, ZHANG Feiwu1,*
1 State Key Laboratory of Critical Mineral Research and Exploration, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
2 College of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
3 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 18072KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统芬顿催化处理技术因催化效率低、易引发二次污染等多种痛点问题,在工业废水处理中的应用受限,开发具有高催化活性和稳定性的芬顿类催化剂是废水处理的重大挑战。本工作以天然黄铁矿(Pyrite)作为芬顿铁源,利用机械球磨法成功设计了一种新型自修复非均相芬顿试剂——pyrite@WS2。以罗丹明B为模型污染物,采用多因素实验系统评估了催化剂性能。结果表明,助催化剂WS2的引入显著促进了铁离子与亚铁离子之间的循环转化,实现了亚铁离子的缓释,从而提高了体系中羟基自由基(·OH)和超氧自由基(·O2-)的生成效率,增强了污染物的降解效果,并使体系具有自修复循环能力,进而拓宽了pH适用范围,减少了二次污染,显著提升了反应效率,起到三重协同作用。自由基捕获实验及电子顺磁共振进一步证实了·OH和·O2-是催化过程中的主要活性物质。此外,还验证了该催化剂的可批量生产性,并测试了其在多种有机染料降解实验中的优异表现。本工作旨在为黄铁矿基多相芬顿试剂的开发提供全新视角,为解决芬顿类催化剂低催化效率与易二次污染的问题提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王异
覃佳勇
陆胜达
黄旭东
黄在银
张飞武
关键词:  非均相芬顿反应  机械球磨法  黄铁矿  二硫化钨  自修复循环    
Abstract: The conventional Fenton catalytic treatment technology faces significant challenges, including low catalytic efficiency and a high risk of secon-dary pollution, which limit its widespread application in industrial wastewater treatment. Therefore developing Fenton-like catalysts with high catalytic activity and stability is a major challenge in wastewater treatment. In this work a novel self-healing heterogeneous Fenton reagent, pyrite@WS2, was successfully designed using natural pyrite as the Fenton iron source through mechanical ball milling. The catalytic performance was evaluated using rhodamine B as a model pollutant in a multifactor experimental system. The results demonstrated that the introduction of the co-catalyst WS2 significantly enhanced the cyclic conversion between ferric and ferrous ions, leading to an expanded pH range, reduced secondary pollution, and significantly improved reaction efficiency, showcasing a triple synergistic effect. Radical scavenging experiments and EPR further confirmed that ·OH and ·O2- were the primary active species in the catalytic process. Additionally, the study validated the catalyst’s potential for mass production and tested its excellent performance in degrading various organic dyes. In conclusion, this work may provide a new perspective on the development of pyrite-based heterogeneous Fenton reagents and offer an innovative and practical strategy to address the challenges of low catalytic efficiency and secondary pollution in Fenton catalysts.
Key words:  heterogeneous Fenton reaction    mechanical ball milling technique    pyrite    tungsten disulfide    self-healing cycle
发布日期:  2025-10-27
ZTFLH:  O643  
基金资助: 国家自然科学基金(41773057;22263001;2187030521);国家大学生创新创业训练计划项目(202210608147X;202210608130;202410608003X)
通讯作者:  *黄在银,广西民族大学化学化工学院二级教授、硕士研究生导师。目前主要从事纳米材料合成及其热动力学性质、矿物基功能材料的开发、赤泥等固废资源化利用的相关研究工作。HuangZY@gxmzu.edu.cn
张飞武,博士,中国科学院地球化学研究所研究员、博士研究生导师。主要研究方向是探索地质条件下矿物物理性质及其理论模型的前沿方法。zhangfeiwu@vip.gyig.ac.cn   
作者简介:  王异,中国科学院大学博士研究生,指导教师为张飞武研究员,与广西民族大学黄在银教授合作进行矿物基功能材料的开发及其应用。
引用本文:    
王异, 覃佳勇, 陆胜达, 黄旭东, 黄在银, 张飞武. 基于天然黄铁矿构筑自修复循环催化剂及其催化性能研究[J]. 材料导报, 2025, 39(20): 24090156-8.
WANG Yi, QIN Jiayong, LU Shengda, HUANG Xudong, HUANG Zaiyin, ZHANG Feiwu. Study on the Construction of Self-healing Recyclable Catalysts Based on Natural Pyrite and Their Catalytic Performance. Materials Reports, 2025, 39(20): 24090156-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090156  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24090156
1 Saravanakumar K, De Silva S, Siva S S. Chemosphere, 2022, 307, 135593.
2 Ewuzie U, Saliu O D, Dulta K, et al. Journal of Water Process Engineering, 2022, 50, 103273.
3 Franca R D G, Pinheiro H M, Lourenco N D. Reviews in Environmental Science and Bio/Technology, 2020, 19(1), 149.
4 Liu Y, Liu H, She Z. Materials, 2021, 14(18), 5398.
5 Chen X, Yao L, He J, et al. Journal of Hazardous Materials, 2023, 449, 131024.
6 Chen Q, Lü F, Zhang H, et al. Journal of Hazardous Materials, 2023, 244, 120536.
7 Qingbo W, Qiuling C. IOP Conference Series Earth and Environmental Science, 2020, 508(1), 012048.
8 Jain B, Singh A K, Kim H, et al. Environmental Chemistry Letters, 2018, 16(3), 947.
9 Chang J, Li Y, Lu H. Journal of Marine Science and Engineering, 2022, 10(10), 1533.
10 Li H, Yang Y, Liu X, et al. ACS Sustainable Chemistry & Engineering, 2024, 12(15), 5809.
11 Sun H, Liu C, Yao Y. Environmental Engineering Science, 2021, 38(9), 854.
12 Wang Y. HPHT synthesis and performance modulation of Fe-S system compounds. Ph. D. Thesis, Jilin University, China, 2022 (in Chinese).
王遥. Fe-S体系化合物的高温高压制备与性能调控. 博士学位论文, 吉林大学, 2022.
13 Zhao B, Gong J, Song B, et al. Chemosphere, 2022, 308, 136427.
14 He G J, Zhong D J, Xu Y L, et al. Water, Air, & Soil Pollution, 2021, 232, 141.
15 Feng Y, Wu D, Deng Y, et al. Environmental Science & Technology, 2016, 50(6), 3119.
16 Bellér G, Lente G, Fábián I. Inorganic Chemistry, 2017, 56(14), 8270.
17 Zhang Y R, Qian Z, Chen R Z, et al. Chinese Journal of Environmental Engineering, 2024, 18(7), 1840 (in Chinese).
张悦茹, 钱征, 陈荣志, 等. 环境工程学报, 2024, 18(7), 1840.
18 Addou R, Colombo L, Wallace R M. ACS Applied Materials & Interfaces, 2015, 7(22), 11921.
19 Khataee A, Fathinia S, Fathinia M. Ultrasonics Sonochemistry, 2017, 34, 904.
20 Li Q C, Ning X T, Yang S, et al. Journal of the Chinese Ceramic Society, 2024, 52(10), 3093 (in Chinese).
李春全, 宁晓田, 杨珊珊, 等. 硅酸盐学报, 2024, 52(10), 3093.
21 Luo H, Zhou X, Guo X, et al. Chemosphere, 2021, 262, 128067.
22 Wang Y S. Efficiency and mechanism of nitrilotriacetic acid-enhanced Mn2+ activated IO4- for carbamazepine removal in aqueous solution. Master’s Thesis, Harbin Institute of Technology, China, 2022 (in Chinese).
王义世. 氨三乙酸强化Mn2+活化IO4-去除水中卡马西平的效能与机理. 硕士学位论文, 哈尔滨工业大学, 2022.
23 Wei X P, Wu H H, He G P, et al. Journal of Hazardous Materials, 2017, 321, 408.
24 Zhou T, Li Y Z, Ji J, et al. Separation and Purification Technology, 2008, 62(3), 551.
25 Qin H D, Yang Y C, Shi W, et al. Journal of Environmental Chemical Engineering, 2021, 9(5), 106184.
26 Xiao Y F, Ji J H, Zhu L L, et al. Chemical Engineering Journal, 2020, 383, 123158.
27 Jin Z, Li Q, Tang P, et al. Nanoscale Advances, 2022, 4(14), 3073.
28 Hu L, Liu Z, He C, et al. Composites Part B, 2019, 176, 107220.
29 Cheng Y, Wang K, Zhou Y, et al. Journal of Materials Science, 2019, 54(10), 7850.
30 Wang D, Yi N, Wang Y, et al. Chemical Engineering Journal, 2021, 421, 129948.
31 Nezamzadeh-Ejhieh A, Salimi Z. Applied Catalysis A, 2010, 390(1), 110.
32 Shen Z W, Luo H W, Guo Z H, et al. Acta Scientiae Circumstantiae, 2024(10), 298 (in Chinese).
申祖武, 罗浩伟, 郭泽浩, 等. 环境科学学报, 2024(10), 298.
33 Talbi K, Mammeri L, Lekikot B, et al. Separation and Purification Technology, 2022, 302, 122052.
34 Li P, Qu J, Wu J, et al. ACS Omega, 2022, 7, 46250.
35 Lin X, Hu J, Mo Z, et al. Journal of Environmental Management, 2024, 365, 121607.
36 Neyens E, Baeyens J. Journal of Hazardous Materials, 2003, 98(1-3), 33.
37 Zhou Y Z. Degradation of tetracycline in wastewater by perovskite-based heterogeneous Fenton-like system. Master’s Thesis, Harbin Institute of Technology, China, 2021(in Chinese).
周宇喆. 钙钛矿基非均相类芬顿体系降解废水中四环素的研究. 硕士学位论文, 哈尔滨工业大学, 2021.
38 Chen Y, Shao Y, Li O, et al. Chemical Engineering Journal, 2022, 442, 135961.
39 Yuan S A, Peng J Y, Zhang Y R, et al. ACS Catalysis, 2022, 12(12), 7278.
40 Mycroft J R, Nesbitt H W, Pratt A R, et al. Geochimica et Cosmochimica Acta, 1995, 59(4), 721.
41 Sang F, Yin Z, Wang W J, et al. Journal of Cleaner Production, 2022, 378, 134459.
42 Tang J, Wang C D, Zhang H C, et al. Journal of Alloys and Compounds, 2022, 911, 164991.
43 Luo H W, Liu C Y, Cheng Y, et al. Science of the Total Environment, 2021, 787, 147724.
44 Zhang G T, Hao Z T, Yin J, et al. Dalton Transactions, 2020, 49, 9804.
[1] 李正月, 李东泽, 孙秀英, 蔡沛文, 廖雨青, 陈秀琼, 颜慧琼, 林强. 球磨辅助海藻酸钠降解工艺参数的优化及其产物的结构和性能[J]. 材料导报, 2022, 36(6): 21010003-6.
[2] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[3] 郑立聪, 谢克强, 刘战伟, 马文会. 一水硬铝石型高硫铝土矿脱硫研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 84-93.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed