Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24090003-7    https://doi.org/10.11896/cldb.24090003
  金属与金属基复合材料 |
氧与Co/TiAl协同作用对激光增材IN718合金组织与力学性能的影响
朱涛1, 伍文星1, 阳彤1, 陈平虎1, 郭亮亮1, 金旭明1, 邹新长2, 邱长军1,*
1 南华大学超常环境下装备安全服役技术湖南省重点实验室,湖南 衡阳 421001
2 岳阳大陆激光技术有限公司,湖南 岳阳 414000
Effect of Oxygen and Co/TiAl Synergism on the Organization and Mechanical Properties of Laser Additive IN718 Alloy
ZHU Tao1, WU Wenxing1, YANG Tong1, CHEN Pinghu1, GUO Liangliang1, JIN Xuming1, ZOU Xinchang2, QIU Changjun1,*
1 Hunan Provincial Key Laboratory of Equipment Safety Service Technology Under Abnormal Environment, University of South China, Hengyang 421001,Hunan China
2 Yueyang Continental Laser Technology Co., Ltd., Yueyang 414000, Hunan, China
下载:  全 文 ( PDF ) ( 70383KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 IN718合金因其优异的性能被广泛使用,因此更好地提升IN718合金在高温下的性能及服役温度尤为重要。通过成分调控调整了合金中氧与Co/TiAl的含量,制备了高强度且无裂纹的激光增材试样,并研究了试样的组织结构与力学性能。结果表明,随着氧含量与Co/TiAl质量比的提升,试样组织结构得到细化,力学性能也大幅度提升。Co/TiAl质量比增加使试样强度和硬度提升;氧含量增加会促使晶界上形成细小氧化物,在室温下对试样性能无明显影响。在900 ℃高温环境下晶界上氧化物起钉扎作用并协同Co、Ti、Al强化作用使试样高温性能提升,且当氧含量为3.8×10-4、Co/TiAl质量比为0.88时,未经热处理工艺,试样的力学性能在900 ℃下较IN718试样大幅度提升,强度与延伸率的平衡性较好。试样在航空发动机的热端部件修复领域具有广阔的应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱涛
伍文星
阳彤
陈平虎
郭亮亮
金旭明
邹新长
邱长军
关键词:  激光增材制造  IN718  氧含量  Co/TiAl  显微组织  力学性能    
Abstract: IN718 alloy is widely used due to its excellent performance, it is important to improve the performance and service temperature of IN718 alloy at high temperatures. In this work, the content of oxygen and Co/TiAl in the alloy was adjusted through compositional control to prepare a high-strength crack-free laser additive specimen, and the organizational structure and mechanical properties of the specimen were analyzed. The results show that as the oxygen content and the Co/TiAl mass ratio incnease, the specimen tissue structure is refined and the mechanical properties are substantially improved. Increasing Co/TiAl mass ratio enhances the strength and hardness of the specimen;the increase of oxygen content promotes the formation of fine oxides on the grain boundaries, which have no significant effect on the specimen properties at room temperature. In a 900 ℃ high-temperature environment, grain boundary oxides play a role in pinning and the synergistic Co, Ti, Al reinforcing effect of high-temperature performance enhancement of the specimen. When the oxygen content is 3.8×10-4 and Co/TiAl mass ratio is 0.88, without a heat treatment process, the specimen at 900 ℃ compared to the mechanical properties of the IN718 specimen is greatly improved, the balance between strength and elongation of the better. It has great application prospect in the field of repairing hot end parts of aero-engine.
Key words:  laser additive manufacturing    IN718    oxygen content    Co/TiAl    microscopic organization    mechanical property
发布日期:  2025-10-27
ZTFLH:  TH142.2  
基金资助: 国家自然科学基金(52371032);湖南省研究生科研创新项目(CX20240837;CX20230956)
通讯作者:  *邱长军,博士,南华大学机械工程学院教授,博士研究生导师。主要从事激光增材制造技术、材料表面改性、数值计算与模拟、快速模具制造及成套设备等方面的研究。qcj@usc.edu.cn   
作者简介:  朱涛,南华大学机械工程学院硕士研究生,在邱长军教授的指导下进行研究,目前研究领域为激光增材制造。
引用本文:    
朱涛, 伍文星, 阳彤, 陈平虎, 郭亮亮, 金旭明, 邹新长, 邱长军. 氧与Co/TiAl协同作用对激光增材IN718合金组织与力学性能的影响[J]. 材料导报, 2025, 39(20): 24090003-7.
ZHU Tao, WU Wenxing, YANG Tong, CHEN Pinghu, GUO Liangliang, JIN Xuming, ZOU Xinchang, QIU Changjun. Effect of Oxygen and Co/TiAl Synergism on the Organization and Mechanical Properties of Laser Additive IN718 Alloy. Materials Reports, 2025, 39(20): 24090003-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090003  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24090003
1 Drexler A, Oberwibjler B, Primig S, et al. Materials Science and Engineering: A, 2018, 723, 314.
2 Zhang Y C, Li Z G, Nie P L, et al. Surface Engineering, 2013, 29(6), 414.
3 Yalcin M Y, Derin B, Aydogan E. Journal of Alloys and Compounds, 2022, 914, 165193.
4 Han D W, Sun W R, Yu L X, et al. Journal of Aerospace Materials, 2018, 38(4), 64 (in Chinese).
韩大尉, 孙文儒, 于连旭, 等. 航空材料学报, 2018, 38(4), 64.
5 Wang T, Zhu L, Song H, et al. Optics & Laser Technology, 2022, 148, 107780.
6 Zhang X, Chai Z, Chen H, et al. Materials & Design, 2021, 197, 109214.
7 Shu D, Cui X X, Li Z, et al. Metals, 2020, 10(3), 383.
8 Stegman B, Yang B, Shang Z, et al. Journal of Alloys and Compounds, 2022, 920, 165846.
9 Gao Y, Zhang D, Cao M, et al. Materials Science and Engineering: A, 2019, 767, 138327.
10 Vicente F B, Correa D R N, Donato T A G, et al. Materials, 2014, 7(1), 542.
11 Tang W, Wang T, Miao R J. Rare Metal Materials and Engineering, 2017, 46(11), 3446 (in Chinese).
汤武, 汪涛, 缪润杰. 稀有金属材料与工程, 2017, 46(11), 3446.
12 Zhang J, Zhang Q L, Yao J H, et al. Hot Processing Technology, 2022, 51(19), 30 (in Chinese).
张杰, 张群莉, 姚建华, 等. 热加工工艺, 2022, 51(19), 30.
13 Zhang L, Li Y, Zhang Q, et al. Materials Science and Engineering: A, 2022, 844, 142947.
14 Xu P, Zhu L, Xue P, et al. Ceramics International, 2022, 48(7), 9218.
15 Zhang J, Zhang Q, Zhuang Y, et al. Optics & Laser Technology, 2021, 135, 106659.
16 Xu J, Lin X, Guo P, et al. Journal of Alloys and Compounds, 2018, 749, 859.
17 Wei Q, Xie Y, Teng Q, et al. Chinese Journal of Mechanical Enginee-ring: Additive Manufacturing Frontiers, 2022, 1(4), 100055.
18 Li L, Ding Q, Zhang Z, et al. Journal of Materials Research and Technology, 2023, 24(4650), e4660.
19 Lan C, Chen F, Chen H, et al. Journal of Materials Science & Technology, 2018, 34(11), 2100.
20 Metzler D A. Welding Journal, 2012, 91(6), 64.
21 Hu X A, Zhao G L, Liu F C, et al. Rare Metals, 2020, 39, 1181.
22 Dong Z, Ma Z, Yu L, et al. Nature Communications, 2021, 12(1), 5052.
23 Yang T, Wu W, Zhao L, et al. Journal of Alloys and Compounds, 2024, 982, 173679.
24 Hao Z B, Ge C C, Li X G, et al. Acta Metallica Sinica, 2020, 56(8), 1133 (in Chinese).
郝志博, 葛昌纯, 黎兴刚, 等. 金属学报, 2020, 56(8), 1133.
25 Huang L, Cao Y, Zhang J, et al. Journal of Alloys and Compounds, 2021, 865, 158613.
26 Tang C, Cheng S J, Qu J L, et al. Rare Metal Materials and Engineering, 2021, 50(9), 3280 (in Chinese).
唐超, 程世君, 曲敬龙, 等. 稀有金属材料与工程, 2021, 50(9), 3280.
27 Wang M, Liu Y H, Liu Z Z. Materials Reports, 2024, 38(6), 223 (in Chinese).
王淼, 刘延辉, 刘昭昭. 材料导报, 2024, 38(6), 223.
28 Han Q, Gu Y, Soe S, et al. Optics & Laser Technology, 2020, 124, 105984.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 曾琦, 倪浩涵, 刘伟, 黎超超, 王江伟. 增材制造GH3536回流燃烧室火焰筒主燃孔的微观组织演变与裂纹扩展行为[J]. 材料导报, 2025, 39(8): 24040055-4.
[12] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[13] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[14] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[15] 梅婷, 徐洪扬, 李逊, 龙运伟, 唐华, 李志鹏, 邹爱华. 柱塞泵关键摩擦副中复杂黄铜与硅锰黄铜的微观组织与耐磨特性研究[J]. 材料导报, 2025, 39(7): 24080117-5.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed