Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23120247-7    https://doi.org/10.11896/cldb.23120247
  金属与金属基复合材料 |
AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能
曹雷刚*, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩
北方工业大学机械与材料工程学院,北京 100144
Microstructure Evolution and Mechanical Properties of AlCoCrFeNix High-entropy Alloys Heat-treated at High Temperature
CAO Leigang*, HOU Pengyu, YANG Yue, MENG Yi, LIU Yuan, CUI Yan
School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
下载:  全 文 ( PDF ) ( 24596KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于凝固过程的枝晶生长和元素偏析等行为,双相高熵合金很难获得良好的综合力学性能。不同于设计共晶高熵合金或改善铸造工艺,借助亚稳态相变可以调控高熵合金的微观组织和力学性能。多主元高熵合金物相组成和分布与组元种类和含量密切相关,固态相变对合金组织和性能的影响规律不尽相同。采用真空电弧熔炼制备AlCoCrFeNix(1.4≤x≤1.7)高熵合金,研究高温热处理过程合金微观组织的演变及其对力学性能的影响。结果表明,随Ni含量增加,铸态高熵合金BCC/B2枝晶组织比例逐渐降低,晶间区域比例逐渐增加,且由FCC单相组织转变为共晶组织。合金屈服强度和抗拉强度分别由1 067 MPa(x=1.4)和1 416 MPa(x=1.5)降低至464 MPa和1 191 MPa(x=1.7),延伸率由1.7%(x=1.4)提升至11.5%(x=1.7)。经1 100 ℃高温热处理,BCC/B2枝晶组织转变为FCC和B2双相组织,合金强度均有所降低,塑性明显提升。热处理态AlCoCrFeNi1.6和AlCoCrFeNi1.7高熵合金呈现典型的两级网状组织,且因FCC相脱溶析出B2相,合金屈服强度降幅逐渐减小。其中,热处理态AlCoCrFeNi1.7高熵合金屈服强度和抗拉强度降幅分别仅为4.1%和7.5%,而延伸率增幅达52.2%,综合力学性能显著提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹雷刚
侯鹏宇
杨越
蒙毅
刘园
崔岩
关键词:  高熵合金  热处理  相变  微观组织  力学性能    
Abstract: Due to dendrite growth and element segregation during solidification, dual-phase high-entropy alloys cannot possess good comprehensive mechanical properties. Different from the design of eutectic alloy and the modification of casting process, phase transition of the metastable phase provides an optional route to regulate the microstructure and mechanical properties of the high-entropy alloy. However, phase constitution and distribution are closely related to the type and content of the alloying element, resulting in the varying effect of the solid-state phase transformation on the microstructure and mechanical properties of the multi-component high-entropy alloys. AlCoCrFeNix (1.4≤x≤1.7) high-entropy alloys were prepared by arc-melting method and the effect of high-temperature heat treatment on the microstructure and mechanical properties was investigated. As the Ni content is increased, the proportion of dendrite region (BCC/B2 spinodal structure) decreases gradually, while the proportion of interdendrite region increases with the structure evolving from FCC dendrite to FCC/B2 eutectic. Correspondingly, the yield strength and tensile strength of the alloys decrease from 1 067 MPa (x=1.4) and 1 416 MPa (x=1.5) to 464 MPa and 1 191 MPa (x=1.7), respectively, and the elongation increases from 1.7% (x=1.4) to 11.5% (x=1.7). After heat treatment at 1 100 ℃, the BCC/B2 spinodal structure transforms into FCC and B2 dual-phase structure, giving rise to the increase of plasticity and the decrease of strength. The heat-treated AlCoCrFeNi1.6 and AlCoCrFeNi1.7 high-entropy alloys present the typical network structure of the FCC phase, which contains the B2 precipitates and can prevent the reduction of the yield strength. The heat-treated AlCoCrFeNi1.7 high-entropy alloys possess the good comprehensive mechanical properties with 52.2% increment in elongation, while the decrement in yield strength and tensile strength are only 4.1% and 7.5%, respectively.
Key words:  high-entropy alloy    heat treatment    phase transition    microstructure    mechanical property
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TG113  
基金资助: 国家自然科学基金(52001006)
通讯作者:  *曹雷刚,博士,北方工业大学机械与材料工程学院副教授、硕士研究生导师。主要从事高熵合金和金属基复合材料等方面的研究。caolg@ncut.edu.cn   
引用本文:    
曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
CAO Leigang, HOU Pengyu, YANG Yue, MENG Yi, LIU Yuan, CUI Yan. Microstructure Evolution and Mechanical Properties of AlCoCrFeNix High-entropy Alloys Heat-treated at High Temperature. Materials Reports, 2025, 39(2): 23120247-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120247  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23120247
1 Cantor B, Chang I T H, Knight P. Materials Science & Engineering A, 2004, 375-377, 213.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
3 Gangireddy S, Gwalani B, Soni V, et al. Materials Science and Enginee-ring A, 2019, 739, 158.
4 Yu Q Y, Xie X C, Lan B, et al. Journal of Materials Engineering, 2024, 52(1), 45 (in Chinese).
于秋颖, 谢孝昌, 兰博, 等. 材料工程, 2024, 52(1), 45.
5 Miao J, Li T, Li Q, et al. Materials, 2023, 16(3), 1085.
6 Zhao J H, Jin R H, Jin X L, et al. Materials Reports, 2023, 37(17), 22030061 (in Chinese).
赵建华, 金荣华, 纪秀林, 等. 材料导报, 2023, 37(17), 22030061.
7 Tian Z, Li C C, Wu Y, et al. Journal of Materials Engineering, 2024, 52(1), 1 (in Chinese).
田震, 李聪聪, 吴渊, 等. 材料工程, 2024, 52(1), 1.
8 Wan Y, Mo J, Wang X, et al. Acta Metallurgical Sinica, 2021, 34(11), 1585.
9 Lu Y, Gao X, Jiang L, et al. Acta Materialia, 2017, 124, 143.
10 Wang W R, Wang W L, Yeh J W. Journal of Alloys and Compounds, 2014, 589, 143.
11 Cao L, Wang X, Wang Y, et al. Applied Physics A, 2019, 125(10), 699.
12 Feuerbacher M, Heidelmann M, Thomas C. Materials Research Letters, 2015, 3(1), 1.
13 He J, Liu W, Wang H, et al. Acta Materialia, 2014, 62, 105.
14 Lu Y, Dong Y, Guo S, et al. Scientific Reports, 2014, 4, 6200.
15 Shi P, Li R, Li Y, et al. Science, 2021, 373(6557), 912.
16 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Research Letters, 2016, 4(3), 174.
17 Bhattacharjee T, Wani I S, Sheikh S, et al. Scientific Reports, 2018, 8, 3276.
18 Shi P, Ren W, Zheng T, et al. Nature Communications, 2019, 10, 489.
19 Divinski S V, Pokoev A V, Neelamegan E, et al. Diffusion Foundations, 2018, 17, 69.
20 Wang X, Zang Z, Wang Z, et al. Materials, 2022, 15(3), 1215.
21 Munitz A, Salhov S, Hayun S, et al. Journal of Alloys and Compounds, 2016, 683, 221.
22 Hou P, Yang Y, Zhang L, et al. Materials, 2023, 16(22), 7161.
23 Tian M Y, Wu C J, Liu Y, et al. Materials Reports, 2020, 34(17), 17067 (in Chinese).
田梦云, 吴长军, 刘亚, 等. 材料导报, 2020, 34(17), 17067.
24 Cao L G, Wang F, Hou P Y, et al. Journal of Materials Engineering, 2024, 52(1), 249 (in Chinese).
曹雷刚, 王帆, 侯鹏宇,等. 材料工程, 2024, 52(1), 249.
25 Wang W R, Wang W L, Wang S C, et al. Intermetallics, 2012, 26, 44.
26 Qu S, Li Y, Wang C, et al. Materials Science & Engineering A, 2020, 787, 139455.
27 Nassar A, Mullis A, Cochrane R, et al. Journal of Alloys and Compounds, 2022, 900, 163350.
28 Linden Y, Pinkas M, Munitz A, et al. Scripta Materialia, 2017, 139, 49.
29 Lei Z, Liu X, Wu Y, et al. Nature, 2018, 563(7732), 546.
[1] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[2] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[3] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[4] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[5] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[6] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[7] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[8] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[9] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[10] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[11] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[12] 陈琛, 陈昱林, 苏璇, 卢璟钰, 于俊杰, 张建, 吉卫喜. Al-Zn体系高压扭转过程中的相变机理[J]. 材料导报, 2024, 38(9): 22120148-6.
[13] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[14] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[15] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed