Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23120160-8    https://doi.org/10.11896/cldb.23120160
  无机非金属及其复合材料 |
三种微生物矿化修复再生混凝土裂缝效果对比分析
李克亮1, 颜辰1, 陈希1, 陈爱玖1, 杜晓蒙2, 李伟华1,*
1 华北水利水电大学土木与交通学院,郑州 450045
2 郑州鼎盛高新能源工程技术有限公司,郑州 450001
Comparative Analysis of the Repair Effect of Three Methods of Microbial Induced Calcium Carbonate Precipitation on Recycled Aggregate Concrete Cracks
LI Keliang1, YAN Chen1, CHEN Xi1, CHEN Aijiu1, DU Xiaomeng2, LI Weihua1,*
1 College of Civil Engineering and Transportation, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
2 Zhengzhou Dingsheng High Tech Energy Engineering Technology Co., Ltd., Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 11342KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为获得微生物诱导碳酸钙沉淀(MICP)修复混凝土裂缝的较好技术方案,确定了巨大芽孢杆菌的最佳生长条件,研究了注射法、琼脂固载微生物法以及再生骨料固载微生物法对再生混凝土裂缝的修复效果,对比分析了三种修复方案下的最大修复裂缝宽度、面积修复率、渗透系数降低率、沉积深度及沉积产物的微观形貌和组成。研究表明:修复28 d后,采用琼脂固载微生物法时表面最大修复裂缝宽度为0.66 mm,大于采用注射法和再生骨料固载微生物法的0.29 mm、0.56 mm;在修复早期,采用琼脂固载微生物法在面积修复率和渗透系数降低率方面显著优于另外两种修复方式;再生骨料固载微生物法产生了较大的沉积深度,琼脂固载微生物法则更多在表面产生沉积产物;MICP修复混凝土裂缝的填充物为方解石型CaCO3。因此,采用MICP技术修复再生混凝土微裂缝是有效的,且合适的固载方式可以显著提升微生物修复再生混凝土裂缝效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李克亮
颜辰
陈希
陈爱玖
杜晓蒙
李伟华
关键词:  再生混凝土  裂缝  修复  微生物  微观形貌    
Abstract: To obtain better technical solution of microbial induced calcium carbonate precipitation (MICP) to repair recycled aggregate concrete cracks, the optimum growth conditions of Bacillus megaterium were determined. Three methods of injection, agar immobilization and recycled aggregate immobilization with Bacillus megaterium were used. Comparative analyses of the maximum repair crack width, the area repair rate, reduction rate of permeability coefficient, deposition depth, micro morphology and composition of the deposited product were carried out under three methods. Theresults show that after repairing for 28 d, the maximum repair crack width uisng agar immobilization method is 0.66 mm, which is larger than 0.56 mm and 0.29 mm using the recycled aggregate immobilization method and the injection method, respectively. At the same time, the area repair rate and the reduction rate of permeability coefficient using agar immobilization method in the early stage are larger than that of the other two repair methods. Deposition depth using recycled aggregate immobilization method is the largest, and it is the smallest using agar immobilization method. The filling material from MICP to repair concrete cracks is proved to be calcite. MICP technology is effective to repair recycled aggregate concrete cracks, and appropriate immobilization method can significantly improve the MICP repair efficiency.
Key words:  recycled aggregate concrete    crack    repair    microbial    micro morphology
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TU528  
基金资助: 国家自然科学基金面上项目(52179133);河南省科技攻关项目(222102320131)
通讯作者:  *李伟华,二级教授,博士研究生导师,国家杰出青年科学基金获得者,欧洲自然科学院外籍院士,国家“万人计划”创新领军人才,英国皇家化学会会士,科技部中青年创新领军人才,新世纪巾帼发明家,河南省基础设施腐蚀防控重点实验室主任。主研领域为钢筋混凝土材料与结构腐蚀防控,提出了钢结构防腐涂层损伤多模式自修复理论、纳米负载自催化钢筋靶向阻锈理论,研发了多机制协同作用涂层损伤多尺度自修复和靶向阻锈剂技术,成果应用于港珠澳大桥、胶州湾跨海大桥等重大工程项目。liweihua@ncwu.edu.cn   
作者简介:  李克亮,博士,华北水利水电大学教授、硕士研究生导师。主要从事低碳生态建筑材料、固体废弃物资源化利用、高性能无机胶凝材料及其混凝土的研究。
引用本文:    
李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
LI Keliang, YAN Chen, CHEN Xi, CHEN Aijiu, DU Xiaomeng, LI Weihua. Comparative Analysis of the Repair Effect of Three Methods of Microbial Induced Calcium Carbonate Precipitation on Recycled Aggregate Concrete Cracks. Materials Reports, 2025, 39(2): 23120160-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120160  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23120160
1 Qian C X, Zheng T W, Rui Y F. Science China Technological Sciences, 2021, 64(1), 2067.
2 Liu X, Guo Y C, Wang X, et al. Bulletin of Ceramics, 2018, 37(7), 2173(in Chinese).
刘雪, 郭远臣, 王雪, 等. 硅酸盐通报, 2018, 37(7), 2173.
3 Zhang Y C, Li Q N. Concrete, 2010(12), 137(in Chinese).
张永存, 李青宁. 混凝土, 2010(12), 137.
4 Alshaghel A, Parveen S, Rana S, et al. Composites Part B, 2018, 149,122.
5 Wang W H, Li Z, Zhang J G, et al. Concrete, 2020(3), 29 (in Chinese).
王文花, 李珠, 张家广, 等. 混凝土, 2020(3), 29.
6 Mu S, Liu J Z. Journal of the Chinese Ceramics, 2015, 43(6), 829 (in Chinese).
穆松, 刘建忠. 硅酸盐学报, 2015, 43(6), 829.
7 Schlicke D D A, Tue V N H D P. Structural Concrete, 2015, 16(2), 221.
8 Chu H Q, Jiang L H, Xu Y. Journal of Building Materials, 2009, 12(6), 729 (in Chinese).
储洪强, 蒋林华, 徐怡. 建筑材料学报, 2009, 12(6), 729.
9 Xu J, Wang X Z. Construction and Building Materials, 2018, 167,1.
10 Wang R, Song A X, Chen X, et al. KSCE Journal of Civil Engineering, 2022, 26(5) ,1.
11 Shi B C, Chen J Y, Huang H C, et al. Concrete, 2022(12), 52 (in Chinese).
石宝存, 陈景雅, 黄海超, 等. 混凝土, 2022(12), 52.
12 Chuong S C, Fikri S M, Hamidah S S M, et al. Materials (Basel, Switzerland), 2020, 13(21), 4993.
13 Achal V, Mukerjee A, Reddy S M. Construction and Building Materials, 2013, 48, 1.
14 Han Q Q, Lu W, Jiang L, et al. Bulletin of Silicate, 2022, 41(9), 2993 (in Chinese).
韩强强, 路伟, 姜鲁, 等. 硅酸盐通报, 2022, 41(9), 2993.
15 Hua S Z, Zhang J G, Gao P, et al. Journal of Composite Materials, 2023, 40(11), 6299 (in Chinese).
花素珍, 张家广, 高沛, 等. 复合材料学报, 2023, 40(11), 6299.
16 Sun X H, Miao L C. Journal of Advanced Concrete Technology, 2020, 18(5), 307.
17 Tittelboom V K, Belie D N, Muynck D W, et al. Cement and Concrete Research, 2009, 40(1), 157.
18 Wang J Y, Tittelboom V K, Belie D N, et al. Construction and Building Materials, 2011, 26(1), 532.
19 Al-Thawadi S M. Journal of Advanced Science and Engineering Research, 2011, 1(1), 98.
20 Xu J, Du Y L, Bai H L. Journal of Functional Materials, 2016, 47(4), 4001 (in Chinese).
徐晶, 杜雅莉, 白慧莉. 功能材料, 2016, 47(4), 4001.
21 Zhu Y G, Wu C R, Wu Y K, et al. Concrete, 2018(7), 88 (in Chinese).
朱亚光, 吴春然, 吴延凯, 等. 混凝土, 2018(7), 88.
22 Li Z A, Lu C H, Cheng L, et al. Materials Reports, 2023, 37(13), 125(in Chinese).
李锺奥, 陆春华, 成亮, 等. 材料导报, 2023, 37(13), 125.
23 Ramachandran S K, Ramakrishnan V, Bang S S. Materials Journal, 2001, 98(1), 3.
24 Guo H X, Zhang Y, Cheng X H, et al. Industrial Architecture, 2015, 45(7), 36 (in Chinese).
郭红仙, 张越, 程晓辉, 等. 工业建筑, 2015, 45(7), 36.
25 Rong H, Chen Y T, Zhang J R, et al. Journal of the Chinese Academy of Ceramics, 2012, 50(8), 2087 (in Chinese).
荣辉, 陈禹廷, 张津瑞, 等. 硅酸盐学报, 2022, 50(8), 2087.
26 Ren L F, Qian C X. Journal of the Chinese Academy of Ceramics, 2014, 42(11), 1389 (in Chinese).
任立夫, 钱春香. 硅酸盐学报, 2014, 42(11), 1389.
27 Xu J, Wang X Z. Materials Reports, 2018, 32(24), 4276 (in Chinese).
徐晶, 王先志. 材料导报, 2018, 32(24), 4276.
28 Silva D B F, Belie D N, Boon N, et al. Construction and Building Materials, 2015, 93, 1034.
29 Zhang J Q, Zhao C, Zhou A J, et al. Construction and Building Mate-rials, 2019, 224, 815.
30 Li Y X, Xu Q M, Cao Y P, et al. China Soil and Fertilizer, 2010(1), 84 (in Chinese).
李亚星, 徐秋明, 曹一平, 等. 中国土壤与肥料, 2010(1), 84.
31 Qian C X, Wang R X, Zhan Q W. Engineering application basis of microbial mineralization, Science Press, China, 2015, pp. 119 (in Chinese).
钱春香, 王瑞兴, 詹其伟. 微生物矿化的工程应用基础, 科学出版社, 2015, pp. 119.
32 Luo M, Qian C X, Li R Y. Construction and Building Materials, 2015, 87, 1.
33 Chen H C, Qian C X, Ren L F. Journal of Southeast University (Natural Science Edition), 2016, 46(3), 606(in Chinese).
陈怀成, 钱春香, 任立夫. 东南大学学报(自然科学版), 2016, 46(3), 606.
34 Meng Y D, Wang Y, Xu X W, et al. Journal of Hydroelectric Enginee-ring, 2023, 42(11), 126(in Chinese).
孟永东, 王宇, 徐晓蔚, 等. 水力发电学报, 2023, 42(11), 126.
35 Whiffin S V, Paassen V A L, Harkes P M. Geomicrobiology Journal, 2007, 24(5), 417.
[1] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[2] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[3] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[4] 陈楠, 汪宙, 陈爽, 李继文. 稀土Ce对GCr15轴承钢中液析碳化物的影响[J]. 材料导报, 2025, 39(2): 23100091-6.
[5] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[6] 朱永强, 冯孟, 赵亓新, 王寒冰, 杨玉龙, 齐建涛, 丛巍巍. 基于拉曼光谱的含铜自抛光防污涂料的性能研究[J]. 材料导报, 2024, 38(9): 22110241-5.
[7] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[8] 张俊杰, 陈燕强, 钱春香. 水泥基材料中Ca2+对矿化微生物的碳酸酐酶产量、活性和矿化的影响[J]. 材料导报, 2024, 38(8): 22030269-6.
[9] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[10] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[11] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[12] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[13] 唐建辉, 白银, 陈徐东, 张伟. 温度对水性聚氨酯-混凝土宏微观粘结特性的影响[J]. 材料导报, 2024, 38(4): 22060045-6.
[14] 蔺鹏臻, 于博, 何志刚. 焊钉锈蚀对混凝土板锈胀开裂行为的数值模拟及相关影响参数分析[J]. 材料导报, 2024, 38(24): 23120055-8.
[15] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed