Progress on Carbon Sequestration Technologies for the Full Life-cycle of Concrete
YANG Haitao1,2,3,*, LIAN Xinsheng1,2,3, LIU Miao1,2,3, SUN Guowen1,2,3, WANG Wei1,2,3
1 Key Laboratory of Roads and Railway Engineering Safety Control, Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 2 State Key Laboratory of Mechanics Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China 3 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Abstract: The carbon emissions generated by concrete preparation currently account for 28% of the total carbon release of the construction industry. The carbon sequestration technologies have become the key to achieving the “dual carbon” goals. Concrete carbon sequestration technologies refer to the utilization of carbonization reactions between CO2 and alkaline metal ions (such as Ca2+ and Mg2+) or hydration products in concrete pore solutions generating stable carbonates to achieve the purpose of carbon immobilization. Carbonization reactions can affect concretes from the perspectives of characteristics such as pore solution, pore structure, and hydration products, thereby influencing the mechanical properties and durability of concrete. This paper summarizes the carbon sequestration technologies of concrete throughout its full life-cycle (mixing, curing, servicing, and secondary utilization), and systematically discusses the carbonization mechanism, technical characteristics, and storage potential of different carbon sequestration technologies. It has been clarified that injecting CO2 during mixing can promote the carbonization of concrete, but consumes energy and causes additional carbon emissions. Carbonization curing can improve the early strength of concrete, but the dense carbonization products limit the further development of carbonization. The carbonization of servicing concretes does not require human intervention and has great potential for carbon sequestration, but its process is relatively sluggish. The carbonization during the secondary utilization stage can not only achieve CO2 storage, but also improve the quality of aggregates. It is suggested that optimizing existing technologies and introducing new materials and structural forms can improve the CO2 immobilzation efficiency of concrete throughout its full life-cycle.
杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
YANG Haitao, LIAN Xinsheng, LIU Miao, SUN Guowen, WANG Wei. Progress on Carbon Sequestration Technologies for the Full Life-cycle of Concrete. Materials Reports, 2025, 39(2): 23120145-8.
1 Xiao J Z, Deng Q, Xia B. Journal of Architecture and Civil Engineering, 2022, 39(5), 1 (in Chinese). 肖建庄, 邓琪, 夏冰. 建筑科学与工程学报, 2022, 39(5), 1. 2 Xiao J Z, Li A, Ding T. Joural of Southeast University (Natural Science Edition), 2016, 46(5), 1088 (in Chinese). 肖建庄, 黎骜, 丁陶. 东南大学学报(自然科学版), 2016, 46(5), 1088. 3 Wang Y X, Li X L, Liu R. Symmetry, 2022, 14(12), 2615. 4 Ghiat I, Al-Ansari T. Journal of CO2 Utilization, 2021, 45, 101432. 5 Li L K, Liu Q, Huang T Y, et al. Materials Reports, 2022, 36(19), 82 (in Chinese). 李林坤, 刘琦, 黄天勇, 等. 材料导报, 2022, 36(19), 82. 6 Liu B, Gao S, Xu Z Q, et al. Geological Review, 2023, 69(4), 1449 (in Chinese). 柳波, 高硕, 许振强, 等. 地质论评, 2023, 69(4), 1449. 7 Peng T Y, Tang D H, Liu L Q, et al. Bulletin of Chinese Academy of Sciences, 2022, 37(9), 1347 (in Chinese). 彭天玥, 唐得昊, 刘丽强, 等. 中国科学院院刊, 2022, 37(9), 1347. 8 Li Q, Liu G Z, Cai B F, et al. Environmental Engineering, 2018, 36(2), 27 (in Chinese). 李琦, 刘桂臻, 蔡博峰, 等. 环境工程, 2018, 36(2), 27. 9 Takuma W, Zhi C, Sho H, et al. Nature Communications, 2022, 13(1), 127. 10 Torgal F P, Miraldo S, Labrincha J A, et al. Construction and Building Materials, 2012, 36, 141. 11 Chavez U E, Camacho C R, Sosa B M, et al. International Journal of Electrochemical Science, 2013, 8(7), 9015. 12 Ashraf W. Construction and Building Materials, 2016, 120, 558. 13 Meng D, Unluer C, Yang E H, et al. Construction and Building Mate-rials, 2022, 361, 129610. 14 Qian X, Wang J, Fang Y, et al. Journal of CO2 Utilization, 2018, 25, 31. 15 El-Hassan H, Shao Y, Ghouleh Z. ACI Materials Journal, 2013, 110(4), 441. 16 Chen T, Gao X. Journal of CO2 Utilization, 2019, 34, 74. 17 Drouet E, Poyet S, Bescop P L, et al. Cement and Concrete Research, 2018, 115, 445. 18 Zhang D, Cai X, Jaworska B. Construction and Building Materials, 2020, 231, 117122. 19 Huang H, Guo R, Wang T, et al. Journal of Cleaner Production, 2019, 211, 830. 20 Rashid S, Singh M. Arabian Journal for Science and Engineering, 2023, 48(10), 14213. 21 Monkman S, Macdonald M. Construction and Building Materials, 2016, 124, 127. 22 Zhang D Z, Wang W D, Lu J J, et al. Highway Transportation Technology (Applied Technology Edition), 2020, 16(1), 90 (in Chinese). 张党正, 王纬东, 路竣杰, 等. 公路交通科技(应用技术版), 2020, 16(1), 90. 23 Liu Y X, Zha X X. Progress in Steel Building Structures, 2011, 13(1), 36 (in Chinese). 刘轶翔, 查晓雄. 建筑钢结构进展, 2011, 13(1), 36. 24 Fernández-Carrasco L, Rius J, Cement and Concrete Research, 2008, 38(8), 1033. 25 Liu X Y. Research of the hydration and hardening mechanism of cement-based materials after absoubing CO2 in mixing stage. Master's Thesis, China University of Mining and Technology, China, 2019 (in Chinese). 刘翔宇. 新拌水泥基材料吸收CO2对其水化硬化作用机制研究. 硕士学位论文, 中国矿业大学, 2019. 26 Monkman S, Cialdella R, Pacheco J. ACI Materials Journal, 2023, 120(1), 53. 27 Monkman S, Macdonald M. Journal of Cleaner Production, 2017, 167, 365. 28 Adeyemi A. Environmental Challenges, 2020, 1, 100004. 29 Cheng X F, Lin Z C, Ren P F. Concrete, 2020(7), 156 (in Chinese). 程雄飞, 林忠财, 任鹏飞. 混凝土, 2020(7), 156. 30 Kashef-Haghighi S, Shao Y, Ghoshal S. Cement and Concrete Research, 2015, 67, 1. 31 Zhang Z L, Gao Q, Jiang R Y, et al. China Building Materials Science & Technology, 2022, 31(1), 1 (in Chinese). 张忠伦, 高强, 姜瑞雨, 等. 中国建材科技, 2022, 31(1), 1. 32 Auroy M, Poyet S, Bescop P L, et al. Cement and Concrete Research, 2018, 109, 64. 33 Xu H X. Study on migration characteristics and control mechanism of CO2 in the process of carbonation curing for concrete. Master's Thesis, University of Jinan, China, 2017 (in Chinese). 徐红新. 碳化养护混凝土过程中CO2迁移规律及控制机制研究. 硕士学位论文, 济南大学, 2017. 34 Xiao J, Gou C F. Concrete, 2010(1), 40 (in Chinese). 肖佳, 勾成福. 混凝土, 2010(1), 40. 35 Cho H K, Lee H S, Wang X Y, et al. Materials and Structures, 2014, 48(12), 3949. 36 Zou Q Y. Research on carbon dioxide curing concrete technology. Master's Thesis, Central South University, China, 2008 (in Chinese). 邹庆焱. 二氧化碳养护混凝土技术研究. 硕士学位论文, 中南大学, 2008. 37 Dwarakanath R, Duo Z, Gregory K, et al. Nature Communications, 2021, 12(1), 855. 38 Mohd N L K, Itam Z, Sivaganese Y, et al. International Journal of Integrated Engineering, 2020, 12(9), 6. 39 Shi C J, He F, Wu Y Z. Construction and Building Materials, 2012, 26, 257. 40 Rostami V, Shao Y, Boyd A J. Construction and Building Materials, 2011, 25(8), 3345. 41 Shi C J, Wu Y Z. Conservation & Recycling, 2008, 52(8), 1087. 42 Jing R Q, Wang R J, Xing L, et al. Separation and Purification Techno-logy, 2024, 334, 125993. 43 Yuan X Z, Wang J Y, Deng S, et al. Renewable and Sustainable Energy Reviews, 2022, 162, 112413. 44 Frédérick D M, Stéphane J. Current Opinion in Chemical Engineering, 2022, 38, 100868. 45 Possan E, Thomaz W A,Aleandri G A, et al. Case Studies in Construction Materials, 2017, 6, 147. 46 Kaliyavaradhan S K, Ling T C. Journal of CO2 Utilization, 2017, 20, 234. 47 Zhang X Q. Scientific and Technological Innovation, 2018(25), 99 (in Chinese). 张秀清. 科学技术创新, 2018(25), 99. 48 Souto-Martinez A, Delesky E A, Foster K E O, et al. Construction and Building Materials, 2017, 147, 417. 49 Kwon S J, Wang X Y. Journal of Building Engineering, 2021, 38, 102176. 50 Haselbach L, Thomas A. Construction and Building Materials, 2014, 54, 47. 51 Zhang Y, Ta X P, Qin S B, et al. Environmental Science, 2023, 44(9), 5308 (in Chinese). 张源, 他旭鹏, 覃述兵, 等. 环境科学, 2023, 44(9), 5308. 52 He T, Xu R, Chen C, et al. Construction and Building Materials, 2018, 189, 102. 53 Higuchi T, Morioka M, Yoshioka I, et al. Construction and Building Materials, 2014, 67, 338. 54 Moro C, Francioso V, Velat-Lizancos M. Construction and Building Materials, 2021, 275, 122131. 55 Pade C, Guimaraes M. Cement and Concrete Research, 2007, 37(9), 1348. 23120145-756 Pasupathy K, Berndt M, Castel A, et al. Construction and Building Materials, 2016, 125, 661. 57 Kou S C, Zhan B J, Poon C S. Cement and Concrete Composites, 2014, 45, 22. 58 Lorenzo R, Viola B, Paolo G, et al. Resources, Conservation & Recycling, 2022, 184, 106436. 59 Wang D C, Xiao J Z, Xia B, et al. Journal of Tongji University (Natural Science), 2022, 50(11), 1610 (in Chinese). 王佃超, 肖建庄, 夏冰, 等. 同济大学学报(自然科学版), 2022, 50(11), 1610. 60 Tam V W Y, Mahfooz S, Ana C J E, et al. Construction and Building Materials, 2018, 172, 272. 61 Liang C, Lu N, Ma H, et al. Journal of CO2 Utilization, 2020, 39, 101185. 62 Li L K, Liu Q, Ma Z C, et al. Thermal Power Generation, 2021, 50(1), 94 (in Chinese). 李林坤, 刘琦, 马忠诚, 等. 热力发电, 2021, 50(1), 94. 63 Shimza J, Jinyan S, Maria I. Construction and Building Materials, 2023, 382, 131339. 64 Pan S Y, Chiang P C, Chen Y H, et al. Applied Energy, 2014, 113, 267. 65 Zhan B J, Poon C S, Liu Q, et al. Construction and Building Materials, 2014, 67, 3. 66 Xuan D X, Zhan B J, Poon C S. Cement and Concrete Composites, 2016, 65, 67. 67 Thiery M, Dangla P, Belin P, et al. Cement and Concrete Research, 2013, 46, 50. 68 Xuan D, Zhan B, Poon C S. Cement and Concrete Composites, 2017, 84, 214. 69 Gao Y Q, Pan B H, Liang C F, et al. Journal of Civil and Environmental Engineering, 2021, 43(6), 95 (in Chinese). 高越青, 潘碧豪, 梁超锋, 等. 土木与环境工程学报(中英文), 2021, 43(6), 95. 70 Zhang J, Shi C J, Li Y, et al. Construction and Building Materials, 2015, 98, 1. 71 Ying J W, Meng Q J, Xiao J Z. Journal of Building Materials, 2017, 20(2), 277 (in Chinese). 应敬伟, 蒙秋江, 肖建庄. 建筑材料学报, 2017, 20(2), 277. 72 Cao Z J. The effect of recycled aggregate treated by carbon dioxide on pro-perties of recycled concrete. Master's Thesis, Hunan University, China, 2017 (in Chinese). 曹芷杰. 碳化再生骨料混凝土性能的研究. 硕士学位论文, 湖南大学, 2017. 73 Fang X L, Zhan B J, Poon C S. Construction and Building Materials, 2020, 239, 117810. 74 Xuan D X, Zhan B J, Poon C S, et al. Construction and Building Mate-rials, 2016, 113, 664. 75 Li Y K. Improvement of recycled concrete aggregate properties by CO2 curing. Master's Thesis, Hunan University, China, 2015 (in Chinese). 李亚可. 二氧化碳强化再生骨料改进其性能的研究. 硕士学位论文, 湖南大学, 2015. 76 Baifa Z, Yuan F, Jianhe X, et al. Journal of Building Engineering, 2023, 68, 106158. 77 Pan G H, Zhan M M, Fu M H, et al. Construction and Building Mate-rials, 2017, 154, 810. 78 Yang L, Zhu Z, Sun H, et al. Construction and Building Materials, 2023, 403, 133155. 79 Li Y Y. Influence of recycled aggregate content on carbonation perfor-mance of concrete. Master's Thesis, Xi'an University of Science and Technology, China, 2022 (in Chinese). 李阳阳. 再生骨料掺量对混凝土碳化性能影响研究. 硕士学位论文, 西安科技大学, 2022. 80 Lu B, Shi C J, Cao Z J. Journal of Cleaner Production, 2019, 233, 421. 81 Kazmi S M S, Munir M J, Wu Y F, et al. Cement and Concrete Compo-sites, 2019, 104, 103398. 82 Mi R J, Liew K M, Pan G H, Cement and Concrete Composites, 2022, 129, 104486. 83 Wang Z H, Jin L B, Xie Z H, et al. Journal of Anyang Institute of Technology, 2023, 22(4), 85 (in Chinese). 王振豪, 金立兵, 谢志恒, 等. 安阳工学院学报, 2023, 22(4), 85. 84 Xiao J Z, Guan X S, Wang D C, et al. Journal of Architecture and Civil Engineering, 2023, 40(4), 1 (in Chinese). 肖建庄, 关湘烁, 王佃超, 等. 建筑科学与工程学报, 2023, 40(4), 1. 85 Weerdt K D, Plusquellec G, Revert A B, et al. Cement and Concrete Research, 2019, 118, 38. 86 Zhu Z H, Kang J M, Liu Z Q. Construction and Building Materials, 2023, 392, 131916. 87 Kou S C, Zhan B j, Poon C S. Construction and Building Materials, 2011, 28, 549. 88 Kou S C, Zhan B J, Poon C S. Construction and Building Materials, 2012, 36, 566. 89 Li J M. Research on carbonization of waste concrete powder and its application in brickmaking. Master's Thesis, Guangzhou University, China, 2023 (in Chinese). 李嘉茗. 废弃混凝土粉碳化及其在制砖中的应用研究. 硕士学位论文, 广州大学, 2023. 90 Taylor H F W. Cement Chemistry (2nd Ed), Thomas Telford Publishing, UK, 1997, pp.187. 91 Li M S, Wang L, Wang J, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(11),37(in Chinese). 李茂森, 王露, 王军, 等. 硅酸盐通报, 2023, 42(11), 37. 92 Zhang Y H, Wang R X, Liu Z Y. Journal of CO2 Utilization, 2019, 32, 276. 93 Liu H B, Li Q Y. Construction and Building Materials, 2023, 382(13), 131356. 94 Shao J H. Hydration performance and carbonation of clay brick power-cement complex cementitious material. Master's Thesis, Southeast University, China, 2019 (in Chinese). 邵家虎. 粘土砖粉-水泥复合胶凝材料的水化特性和抗碳化性能研究. 硕士学位论文, 东南大学, 2019. 95 Zhao Z F, Yao L, Xiao J Z, et al. Journal of the Chinese Ceramic Society, 2022, 50(8), 2296 (in Chinese). 赵增丰, 姚磊, 肖建庄, 等. 硅酸盐学报, 2022, 50(8), 2296.