Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23120145-8    https://doi.org/10.11896/cldb.23120145
  无机非金属及其复合材料 |
混凝土全寿命周期固碳技术研究进展
杨海涛1,2,3,*, 练鑫晟1,2,3, 柳苗1,2,3, 孙国文1,2,3, 王伟1,2,3
1 石家庄铁道大学道路与铁道工程安全保障省部共建教育部重点实验室,石家庄 050043
2 石家庄铁道大学省部共建交通工程结构力学行为与系统安全国家重点实验室,石家庄 050043
3 石家庄铁道大学土木工程学院,石家庄 050043
Progress on Carbon Sequestration Technologies for the Full Life-cycle of Concrete
YANG Haitao1,2,3,*, LIAN Xinsheng1,2,3, LIU Miao1,2,3, SUN Guowen1,2,3, WANG Wei1,2,3
1 Key Laboratory of Roads and Railway Engineering Safety Control, Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 State Key Laboratory of Mechanics Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
3 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
下载:  全 文 ( PDF ) ( 3704KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 混凝土制备产生的碳排放占建筑业碳排放的28%,固碳技术成为实现“双碳”目标的关键。混凝土固碳技术是指利用CO2与混凝土孔溶液中碱金属离子(如Ca2+和Mg2+)或水化产物的碳化反应生成稳定的碳酸盐来实现CO2的封存。碳化反应会影响孔溶液、孔结构和水化产物的特性,进而影响混凝土的力学和耐久性能。本文围绕混凝土全寿命周期(拌合、养护、服役、二次利用),对混凝土固碳技术进行总结,对不同固碳技术的碳化机理、技术特点和固碳潜力进行了论述。拌合阶段注入CO2可促使混凝土主动碳化,但会消耗能量并产生新的碳排放。碳化养护可提高混凝土早期强度,但致密的碳化产物限制了碳化的进一步发展。服役阶段的碳化无需人为干预,固碳潜力大,但其碳化速率较低。二次利用阶段的碳化不仅可实现CO2封存,还可改善再生骨料的品质。对现有技术进行优化、引入新材料和新结构形式有助于提升全寿命周期混凝土的CO2封存效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨海涛
练鑫晟
柳苗
孙国文
王伟
关键词:  混凝土  全寿命周期  固碳  碳化机理  碳化养护  “双碳”    
Abstract: The carbon emissions generated by concrete preparation currently account for 28% of the total carbon release of the construction industry. The carbon sequestration technologies have become the key to achieving the “dual carbon” goals. Concrete carbon sequestration technologies refer to the utilization of carbonization reactions between CO2 and alkaline metal ions (such as Ca2+ and Mg2+) or hydration products in concrete pore solutions generating stable carbonates to achieve the purpose of carbon immobilization. Carbonization reactions can affect concretes from the perspectives of characteristics such as pore solution, pore structure, and hydration products, thereby influencing the mechanical properties and durability of concrete. This paper summarizes the carbon sequestration technologies of concrete throughout its full life-cycle (mixing, curing, servicing, and secondary utilization), and systematically discusses the carbonization mechanism, technical characteristics, and storage potential of different carbon sequestration technologies. It has been clarified that injecting CO2 during mixing can promote the carbonization of concrete, but consumes energy and causes additional carbon emissions. Carbonization curing can improve the early strength of concrete, but the dense carbonization products limit the further development of carbonization. The carbonization of servicing concretes does not require human intervention and has great potential for carbon sequestration, but its process is relatively sluggish. The carbonization during the secondary utilization stage can not only achieve CO2 storage, but also improve the quality of aggregates. It is suggested that optimizing existing technologies and introducing new materials and structural forms can improve the CO2 immobilzation efficiency of concrete throughout its full life-cycle.
Key words:  concrete    full life-cycle    carbon sequestration    carbonization mechanism    carbon curing    “dual carbon”
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  X511  
  TU528  
基金资助: 国家自然科学基金(52208278);京津冀基础研究合作专项项目(E2021210136);中央引导地方科技发展资金项目(236Z1504G);石家庄铁道大学土木工程学院开放课题
通讯作者:  *杨海涛,石家庄铁道大学讲师、硕士研究生导师。硕士和博士分别毕业于武汉理工大学和北京科技大学。主要从事耐低温混凝土和高性能混凝土自愈合研究。yanghaitao@stdu.edu.cn   
引用本文:    
杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
YANG Haitao, LIAN Xinsheng, LIU Miao, SUN Guowen, WANG Wei. Progress on Carbon Sequestration Technologies for the Full Life-cycle of Concrete. Materials Reports, 2025, 39(2): 23120145-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120145  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23120145
1 Xiao J Z, Deng Q, Xia B. Journal of Architecture and Civil Engineering, 2022, 39(5), 1 (in Chinese).
肖建庄, 邓琪, 夏冰. 建筑科学与工程学报, 2022, 39(5), 1.
2 Xiao J Z, Li A, Ding T. Joural of Southeast University (Natural Science Edition), 2016, 46(5), 1088 (in Chinese).
肖建庄, 黎骜, 丁陶. 东南大学学报(自然科学版), 2016, 46(5), 1088.
3 Wang Y X, Li X L, Liu R. Symmetry, 2022, 14(12), 2615.
4 Ghiat I, Al-Ansari T. Journal of CO2 Utilization, 2021, 45, 101432.
5 Li L K, Liu Q, Huang T Y, et al. Materials Reports, 2022, 36(19), 82 (in Chinese).
李林坤, 刘琦, 黄天勇, 等. 材料导报, 2022, 36(19), 82.
6 Liu B, Gao S, Xu Z Q, et al. Geological Review, 2023, 69(4), 1449 (in Chinese).
柳波, 高硕, 许振强, 等. 地质论评, 2023, 69(4), 1449.
7 Peng T Y, Tang D H, Liu L Q, et al. Bulletin of Chinese Academy of Sciences, 2022, 37(9), 1347 (in Chinese).
彭天玥, 唐得昊, 刘丽强, 等. 中国科学院院刊, 2022, 37(9), 1347.
8 Li Q, Liu G Z, Cai B F, et al. Environmental Engineering, 2018, 36(2), 27 (in Chinese).
李琦, 刘桂臻, 蔡博峰, 等. 环境工程, 2018, 36(2), 27.
9 Takuma W, Zhi C, Sho H, et al. Nature Communications, 2022, 13(1), 127.
10 Torgal F P, Miraldo S, Labrincha J A, et al. Construction and Building Materials, 2012, 36, 141.
11 Chavez U E, Camacho C R, Sosa B M, et al. International Journal of Electrochemical Science, 2013, 8(7), 9015.
12 Ashraf W. Construction and Building Materials, 2016, 120, 558.
13 Meng D, Unluer C, Yang E H, et al. Construction and Building Mate-rials, 2022, 361, 129610.
14 Qian X, Wang J, Fang Y, et al. Journal of CO2 Utilization, 2018, 25, 31.
15 El-Hassan H, Shao Y, Ghouleh Z. ACI Materials Journal, 2013, 110(4), 441.
16 Chen T, Gao X. Journal of CO2 Utilization, 2019, 34, 74.
17 Drouet E, Poyet S, Bescop P L, et al. Cement and Concrete Research, 2018, 115, 445.
18 Zhang D, Cai X, Jaworska B. Construction and Building Materials, 2020, 231, 117122.
19 Huang H, Guo R, Wang T, et al. Journal of Cleaner Production, 2019, 211, 830.
20 Rashid S, Singh M. Arabian Journal for Science and Engineering, 2023, 48(10), 14213.
21 Monkman S, Macdonald M. Construction and Building Materials, 2016, 124, 127.
22 Zhang D Z, Wang W D, Lu J J, et al. Highway Transportation Technology (Applied Technology Edition), 2020, 16(1), 90 (in Chinese).
张党正, 王纬东, 路竣杰, 等. 公路交通科技(应用技术版), 2020, 16(1), 90.
23 Liu Y X, Zha X X. Progress in Steel Building Structures, 2011, 13(1), 36 (in Chinese).
刘轶翔, 查晓雄. 建筑钢结构进展, 2011, 13(1), 36.
24 Fernández-Carrasco L, Rius J, Cement and Concrete Research, 2008, 38(8), 1033.
25 Liu X Y. Research of the hydration and hardening mechanism of cement-based materials after absoubing CO2 in mixing stage. Master's Thesis, China University of Mining and Technology, China, 2019 (in Chinese).
刘翔宇. 新拌水泥基材料吸收CO2对其水化硬化作用机制研究. 硕士学位论文, 中国矿业大学, 2019.
26 Monkman S, Cialdella R, Pacheco J. ACI Materials Journal, 2023, 120(1), 53.
27 Monkman S, Macdonald M. Journal of Cleaner Production, 2017, 167, 365.
28 Adeyemi A. Environmental Challenges, 2020, 1, 100004.
29 Cheng X F, Lin Z C, Ren P F. Concrete, 2020(7), 156 (in Chinese).
程雄飞, 林忠财, 任鹏飞. 混凝土, 2020(7), 156.
30 Kashef-Haghighi S, Shao Y, Ghoshal S. Cement and Concrete Research, 2015, 67, 1.
31 Zhang Z L, Gao Q, Jiang R Y, et al. China Building Materials Science & Technology, 2022, 31(1), 1 (in Chinese).
张忠伦, 高强, 姜瑞雨, 等. 中国建材科技, 2022, 31(1), 1.
32 Auroy M, Poyet S, Bescop P L, et al. Cement and Concrete Research, 2018, 109, 64.
33 Xu H X. Study on migration characteristics and control mechanism of CO2 in the process of carbonation curing for concrete. Master's Thesis, University of Jinan, China, 2017 (in Chinese).
徐红新. 碳化养护混凝土过程中CO2迁移规律及控制机制研究. 硕士学位论文, 济南大学, 2017.
34 Xiao J, Gou C F. Concrete, 2010(1), 40 (in Chinese).
肖佳, 勾成福. 混凝土, 2010(1), 40.
35 Cho H K, Lee H S, Wang X Y, et al. Materials and Structures, 2014, 48(12), 3949.
36 Zou Q Y. Research on carbon dioxide curing concrete technology. Master's Thesis, Central South University, China, 2008 (in Chinese).
邹庆焱. 二氧化碳养护混凝土技术研究. 硕士学位论文, 中南大学, 2008.
37 Dwarakanath R, Duo Z, Gregory K, et al. Nature Communications, 2021, 12(1), 855.
38 Mohd N L K, Itam Z, Sivaganese Y, et al. International Journal of Integrated Engineering, 2020, 12(9), 6.
39 Shi C J, He F, Wu Y Z. Construction and Building Materials, 2012, 26, 257.
40 Rostami V, Shao Y, Boyd A J. Construction and Building Materials, 2011, 25(8), 3345.
41 Shi C J, Wu Y Z. Conservation & Recycling, 2008, 52(8), 1087.
42 Jing R Q, Wang R J, Xing L, et al. Separation and Purification Techno-logy, 2024, 334, 125993.
43 Yuan X Z, Wang J Y, Deng S, et al. Renewable and Sustainable Energy Reviews, 2022, 162, 112413.
44 Frédérick D M, Stéphane J. Current Opinion in Chemical Engineering, 2022, 38, 100868.
45 Possan E, Thomaz W A,Aleandri G A, et al. Case Studies in Construction Materials, 2017, 6, 147.
46 Kaliyavaradhan S K, Ling T C. Journal of CO2 Utilization, 2017, 20, 234.
47 Zhang X Q. Scientific and Technological Innovation, 2018(25), 99 (in Chinese).
张秀清. 科学技术创新, 2018(25), 99.
48 Souto-Martinez A, Delesky E A, Foster K E O, et al. Construction and Building Materials, 2017, 147, 417.
49 Kwon S J, Wang X Y. Journal of Building Engineering, 2021, 38, 102176.
50 Haselbach L, Thomas A. Construction and Building Materials, 2014, 54, 47.
51 Zhang Y, Ta X P, Qin S B, et al. Environmental Science, 2023, 44(9), 5308 (in Chinese).
张源, 他旭鹏, 覃述兵, 等. 环境科学, 2023, 44(9), 5308.
52 He T, Xu R, Chen C, et al. Construction and Building Materials, 2018, 189, 102.
53 Higuchi T, Morioka M, Yoshioka I, et al. Construction and Building Materials, 2014, 67, 338.
54 Moro C, Francioso V, Velat-Lizancos M. Construction and Building Materials, 2021, 275, 122131.
55 Pade C, Guimaraes M. Cement and Concrete Research, 2007, 37(9), 1348.
23120145-756 Pasupathy K, Berndt M, Castel A, et al. Construction and Building Materials, 2016, 125, 661.
57 Kou S C, Zhan B J, Poon C S. Cement and Concrete Composites, 2014, 45, 22.
58 Lorenzo R, Viola B, Paolo G, et al. Resources, Conservation & Recycling, 2022, 184, 106436.
59 Wang D C, Xiao J Z, Xia B, et al. Journal of Tongji University (Natural Science), 2022, 50(11), 1610 (in Chinese).
王佃超, 肖建庄, 夏冰, 等. 同济大学学报(自然科学版), 2022, 50(11), 1610.
60 Tam V W Y, Mahfooz S, Ana C J E, et al. Construction and Building Materials, 2018, 172, 272.
61 Liang C, Lu N, Ma H, et al. Journal of CO2 Utilization, 2020, 39, 101185.
62 Li L K, Liu Q, Ma Z C, et al. Thermal Power Generation, 2021, 50(1), 94 (in Chinese).
李林坤, 刘琦, 马忠诚, 等. 热力发电, 2021, 50(1), 94.
63 Shimza J, Jinyan S, Maria I. Construction and Building Materials, 2023, 382, 131339.
64 Pan S Y, Chiang P C, Chen Y H, et al. Applied Energy, 2014, 113, 267.
65 Zhan B J, Poon C S, Liu Q, et al. Construction and Building Materials, 2014, 67, 3.
66 Xuan D X, Zhan B J, Poon C S. Cement and Concrete Composites, 2016, 65, 67.
67 Thiery M, Dangla P, Belin P, et al. Cement and Concrete Research, 2013, 46, 50.
68 Xuan D, Zhan B, Poon C S. Cement and Concrete Composites, 2017, 84, 214.
69 Gao Y Q, Pan B H, Liang C F, et al. Journal of Civil and Environmental Engineering, 2021, 43(6), 95 (in Chinese).
高越青, 潘碧豪, 梁超锋, 等. 土木与环境工程学报(中英文), 2021, 43(6), 95.
70 Zhang J, Shi C J, Li Y, et al. Construction and Building Materials, 2015, 98, 1.
71 Ying J W, Meng Q J, Xiao J Z. Journal of Building Materials, 2017, 20(2), 277 (in Chinese).
应敬伟, 蒙秋江, 肖建庄. 建筑材料学报, 2017, 20(2), 277.
72 Cao Z J. The effect of recycled aggregate treated by carbon dioxide on pro-perties of recycled concrete. Master's Thesis, Hunan University, China, 2017 (in Chinese).
曹芷杰. 碳化再生骨料混凝土性能的研究. 硕士学位论文, 湖南大学, 2017.
73 Fang X L, Zhan B J, Poon C S. Construction and Building Materials, 2020, 239, 117810.
74 Xuan D X, Zhan B J, Poon C S, et al. Construction and Building Mate-rials, 2016, 113, 664.
75 Li Y K. Improvement of recycled concrete aggregate properties by CO2 curing. Master's Thesis, Hunan University, China, 2015 (in Chinese).
李亚可. 二氧化碳强化再生骨料改进其性能的研究. 硕士学位论文, 湖南大学, 2015.
76 Baifa Z, Yuan F, Jianhe X, et al. Journal of Building Engineering, 2023, 68, 106158.
77 Pan G H, Zhan M M, Fu M H, et al. Construction and Building Mate-rials, 2017, 154, 810.
78 Yang L, Zhu Z, Sun H, et al. Construction and Building Materials, 2023, 403, 133155.
79 Li Y Y. Influence of recycled aggregate content on carbonation perfor-mance of concrete. Master's Thesis, Xi'an University of Science and Technology, China, 2022 (in Chinese).
李阳阳. 再生骨料掺量对混凝土碳化性能影响研究. 硕士学位论文, 西安科技大学, 2022.
80 Lu B, Shi C J, Cao Z J. Journal of Cleaner Production, 2019, 233, 421.
81 Kazmi S M S, Munir M J, Wu Y F, et al. Cement and Concrete Compo-sites, 2019, 104, 103398.
82 Mi R J, Liew K M, Pan G H, Cement and Concrete Composites, 2022, 129, 104486.
83 Wang Z H, Jin L B, Xie Z H, et al. Journal of Anyang Institute of Technology, 2023, 22(4), 85 (in Chinese).
王振豪, 金立兵, 谢志恒, 等. 安阳工学院学报, 2023, 22(4), 85.
84 Xiao J Z, Guan X S, Wang D C, et al. Journal of Architecture and Civil Engineering, 2023, 40(4), 1 (in Chinese).
肖建庄, 关湘烁, 王佃超, 等. 建筑科学与工程学报, 2023, 40(4), 1.
85 Weerdt K D, Plusquellec G, Revert A B, et al. Cement and Concrete Research, 2019, 118, 38.
86 Zhu Z H, Kang J M, Liu Z Q. Construction and Building Materials, 2023, 392, 131916.
87 Kou S C, Zhan B j, Poon C S. Construction and Building Materials, 2011, 28, 549.
88 Kou S C, Zhan B J, Poon C S. Construction and Building Materials, 2012, 36, 566.
89 Li J M. Research on carbonization of waste concrete powder and its application in brickmaking. Master's Thesis, Guangzhou University, China, 2023 (in Chinese).
李嘉茗. 废弃混凝土粉碳化及其在制砖中的应用研究. 硕士学位论文, 广州大学, 2023.
90 Taylor H F W. Cement Chemistry (2nd Ed), Thomas Telford Publishing, UK, 1997, pp.187.
91 Li M S, Wang L, Wang J, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(11),37(in Chinese).
李茂森, 王露, 王军, 等. 硅酸盐通报, 2023, 42(11), 37.
92 Zhang Y H, Wang R X, Liu Z Y. Journal of CO2 Utilization, 2019, 32, 276.
93 Liu H B, Li Q Y. Construction and Building Materials, 2023, 382(13), 131356.
94 Shao J H. Hydration performance and carbonation of clay brick power-cement complex cementitious material. Master's Thesis, Southeast University, China, 2019 (in Chinese).
邵家虎. 粘土砖粉-水泥复合胶凝材料的水化特性和抗碳化性能研究. 硕士学位论文, 东南大学, 2019.
95 Zhao Z F, Yao L, Xiao J Z, et al. Journal of the Chinese Ceramic Society, 2022, 50(8), 2296 (in Chinese).
赵增丰, 姚磊, 肖建庄, 等. 硅酸盐学报, 2022, 50(8), 2296.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[6] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[7] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[8] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[9] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[10] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[11] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[12] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[13] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[14] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[15] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed