Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23090214-7    https://doi.org/10.11896/cldb.23090214
  金属与金属基复合材料 |
平面流铸制备Fe-3%Si硅钢微观组织的数值模拟
宫晓威1, 常庆明1,2,*, 常佳琦1, 鲍思前1,2
1 武汉科技大学材料学部,武汉 430081
2 武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
Numerical Simulation of Microstructure of Fe-3%Si Silicon Steel Prepared by Planar Flow Casting
GONG Xiaowei1, CHANG Qingming1,2,*, CHANG Jiaqi1, BAO Siqian1,2
1 College of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
2 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 8984KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对平面流铸工艺的特点,通过元胞自动机和有限元模型模拟分析Fe-3%Si硅钢平面流铸过程的传热、凝固和晶粒生长过程。当熔潭达到稳定时,在熔潭内部的上、下半月面附近观察到不同程度的涡流现象;熔体接触冷却辊开始凝固并形成稳定薄带;薄带组织主要由贴辊面附近先形成的等轴晶薄层和随后形成的柱状晶组成;贴辊面晶粒尺寸为3~5 μm,自由面晶粒尺寸为7~11 μm。增大过热度和喷嘴速度都会使晶粒尺寸增大,柱状晶比例增大;而提高换热系数和冷却辊转速会使晶粒尺寸减小,柱状晶比例减小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宫晓威
常庆明
常佳琦
鲍思前
关键词:  平面流铸  数值模拟  硅钢  微观组织  柱状晶    
Abstract: Considering the characteristics of the planar flow casting process, numerical simulation was used to analyze the heat transfer, solidification and grain growth of Fe-3%Si silicon steel in plane flow casting process by using cellular automaton and finite element models. Different degrees of reflux were observed near the upper and lower free surfaces in the stable melt pool. The melt that contacts cooling roller begins to solidify to form a stable ribbon in a very short time; the structure of ribbon is equiaxed grains of the roller surface and columnar grains of the free surface, and the grain size is small; the grain size of the roller surface is about 3—5 μm, and the grain size of the free surface is about 7—11 μm. Increasing the superheat and nozzle speed will increase the grain size and the proportion of columnar crystals, while increasing the heat transfer coefficient and cooling roller speed will reduce the grain size.
Key words:  planar flow casting    numerical simulation    silicon steel    microstructure    columnar grain
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  TG244+.3  
基金资助: 国家重点研发计划(2021YFB3800501)
通讯作者:  *常庆明,博士,武汉科技大学材料学部教授、硕士研究生导师,主要从事金属基复合材料开发、多孔泡沫金属开发与应用、材料成型新技术、过程数值仿真等方面的研究。qmchang@163.com   
作者简介:  宫晓威,硕士研究生,主要研究领域为平流铸造工艺。
引用本文:    
宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
GONG Xiaowei, CHANG Qingming, CHANG Jiaqi, BAO Siqian. Numerical Simulation of Microstructure of Fe-3%Si Silicon Steel Prepared by Planar Flow Casting. Materials Reports, 2025, 39(2): 23090214-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23090214  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23090214
1 Wang S. Fabrication, microstructure and properties of Fe-6.5wt.%Si high-silicon steel ribbons by rapid solidification. Master's Thesis, University of Science and Technology Beijing, China, 2018 (in Chinese).
王帅. 快速凝固制备Fe-6.5wt.%Si高硅钢薄带及其组织性能. 博士学位论文, 北京科技大学, 2018.
2 Zhang T. Evolution on the microstructure and texture of the 3%Si non-oriented silicon steels prepared by twin-roll casting process. Master's Thesis, Jilin University, China, 2010 (in Chinese).
张婷. 双辊铸轧3%Si无取向硅钢薄带组织、织构的演变规律.博士学位论文, 东北大学, 2010.
3 Zhang F R, Cheng Z J, Pan Y J. Modern Information Technology, 2021, 5(9), 38(in Chinese).
张斐然, 程舟济, 潘永军. 现代信息科技, 2021, 5(9), 38.
4 Li Y K, Yang Y. Hot Working Technology, 2020, 49(71), 57(in Chinese).
李永康, 杨洋. 热加工工艺, 2020, 49(71), 57.
5 Srinivas M, Majumdar B, Gandham P, et al. Metallurgical and Materials Transactions B, 2011, 42(2), 370.
6 Qiu H. Hot Working Technology, 2018, 47(5), 88(in Chinese).
仇灏. 热加工工艺, 2018, 47(5), 88.
7 Sun H B, Li L J. Journal of South China University of Technology:Natural Science Edition, 2015, 43(11), 67(in Chinese).
孙海波, 李烈军. 华南理工大学学报:自然科学版, 2015, 43(11), 67.
8 Liu T. Numerical simulation on process of preparing Al-based amorphous ribbons by singler-roller melt-spinning method. Ph.D. Thesis, Harbin Institute of Technology, China, 2007(in Chinese).
刘涛. 单辊甩带法制备铝基非晶带过程的数值模拟研究. 硕士学位论文, 哈尔滨工业大学, 2007.
9 Li Y K, Li C, Jiang H J, et al. Applied Thermal Engineering, 2021, 200, 117675.
10 Liu H P, Chen W Z, Qiu S T, et al. Metallurgical and Materials Tran-sactions B, 2009, 40, 411.
11 Wang X L, Luo L, Li W Z. Journal of Magnetism and Magnetic Mate-rials, 2022, 552, 169210.
12 Premkumar R, Samajdar I, Viswanathan N N, et al. Journal of Magne-tism and Magnetic Materials, 2003, 264, 75.
13 Liu H T, Wang Y P, An L Z, et al. Journal of Magnetism and Magnetic Materials, 2016, 420, 192.
14 Li H Z, Liu H T, Liu Z Y, et al. Material Characterization, 2022, 552, 16921.
15 Rubens T, Fernando J G L. Journal of Magnetism and Magnetic Mate-rials, 2006, 304, e608.
16 Chen D M, An Z Z, Wang G D, et al. Materials Today Communications, 2022, 31, 103807.
17 Zhong B L, Cheng Z Y, Marco W, et al. Materials & Design, 2023, 232, 112096.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[3] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[4] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[5] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[6] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[7] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[8] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[9] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[10] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[11] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[12] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[13] 王海军, 牛宇豪, 凌海涛, 乔家龙, 何飞, 仇圣桃. 无取向硅钢中微细夹杂物控制研究进展[J]. 材料导报, 2024, 38(3): 22040407-9.
[14] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[15] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed