Numerical Simulation of Microstructure of Fe-3%Si Silicon Steel Prepared by Planar Flow Casting
GONG Xiaowei1, CHANG Qingming1,2,*, CHANG Jiaqi1, BAO Siqian1,2
1 College of Materials, Wuhan University of Science and Technology, Wuhan 430081, China 2 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Abstract: Considering the characteristics of the planar flow casting process, numerical simulation was used to analyze the heat transfer, solidification and grain growth of Fe-3%Si silicon steel in plane flow casting process by using cellular automaton and finite element models. Different degrees of reflux were observed near the upper and lower free surfaces in the stable melt pool. The melt that contacts cooling roller begins to solidify to form a stable ribbon in a very short time; the structure of ribbon is equiaxed grains of the roller surface and columnar grains of the free surface, and the grain size is small; the grain size of the roller surface is about 3—5 μm, and the grain size of the free surface is about 7—11 μm. Increasing the superheat and nozzle speed will increase the grain size and the proportion of columnar crystals, while increasing the heat transfer coefficient and cooling roller speed will reduce the grain size.
1 Wang S. Fabrication, microstructure and properties of Fe-6.5wt.%Si high-silicon steel ribbons by rapid solidification. Master's Thesis, University of Science and Technology Beijing, China, 2018 (in Chinese). 王帅. 快速凝固制备Fe-6.5wt.%Si高硅钢薄带及其组织性能. 博士学位论文, 北京科技大学, 2018. 2 Zhang T. Evolution on the microstructure and texture of the 3%Si non-oriented silicon steels prepared by twin-roll casting process. Master's Thesis, Jilin University, China, 2010 (in Chinese). 张婷. 双辊铸轧3%Si无取向硅钢薄带组织、织构的演变规律.博士学位论文, 东北大学, 2010. 3 Zhang F R, Cheng Z J, Pan Y J. Modern Information Technology, 2021, 5(9), 38(in Chinese). 张斐然, 程舟济, 潘永军. 现代信息科技, 2021, 5(9), 38. 4 Li Y K, Yang Y. Hot Working Technology, 2020, 49(71), 57(in Chinese). 李永康, 杨洋. 热加工工艺, 2020, 49(71), 57. 5 Srinivas M, Majumdar B, Gandham P, et al. Metallurgical and Materials Transactions B, 2011, 42(2), 370. 6 Qiu H. Hot Working Technology, 2018, 47(5), 88(in Chinese). 仇灏. 热加工工艺, 2018, 47(5), 88. 7 Sun H B, Li L J. Journal of South China University of Technology:Natural Science Edition, 2015, 43(11), 67(in Chinese). 孙海波, 李烈军. 华南理工大学学报:自然科学版, 2015, 43(11), 67. 8 Liu T. Numerical simulation on process of preparing Al-based amorphous ribbons by singler-roller melt-spinning method. Ph.D. Thesis, Harbin Institute of Technology, China, 2007(in Chinese). 刘涛. 单辊甩带法制备铝基非晶带过程的数值模拟研究. 硕士学位论文, 哈尔滨工业大学, 2007. 9 Li Y K, Li C, Jiang H J, et al. Applied Thermal Engineering, 2021, 200, 117675. 10 Liu H P, Chen W Z, Qiu S T, et al. Metallurgical and Materials Tran-sactions B, 2009, 40, 411. 11 Wang X L, Luo L, Li W Z. Journal of Magnetism and Magnetic Mate-rials, 2022, 552, 169210. 12 Premkumar R, Samajdar I, Viswanathan N N, et al. Journal of Magne-tism and Magnetic Materials, 2003, 264, 75. 13 Liu H T, Wang Y P, An L Z, et al. Journal of Magnetism and Magnetic Materials, 2016, 420, 192. 14 Li H Z, Liu H T, Liu Z Y, et al. Material Characterization, 2022, 552, 16921. 15 Rubens T, Fernando J G L. Journal of Magnetism and Magnetic Mate-rials, 2006, 304, e608. 16 Chen D M, An Z Z, Wang G D, et al. Materials Today Communications, 2022, 31, 103807. 17 Zhong B L, Cheng Z Y, Marco W, et al. Materials & Design, 2023, 232, 112096.