Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24080191-10    https://doi.org/10.11896/cldb.24080191
  无机非金属及其复合材料 |
钙镁膨胀剂与SAP复掺对UHPC收缩特性的影响
刘剑辉1,*, 杨五卫1, 苏炜炜1, 汤中亿1, 陈正1, 史才军2
1 广西大学土木建筑工程学院,南宁 530004
2 湖南大学土木工程学院,长沙 410082
Effect of Compounding Calcium-Magnesium Expansive Agent with SAP on the Shrinkage Performance of UHPC
LIU Jianhui1,*, YANG Wuwei1, SU Weiwei1, TANG Zhongyi1, CHEN Zheng1, SHI Caijun2
1 School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 College of Civil Engineering, Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 24883KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(UHPC)自收缩过大一直是制约其应用的关键问题。本工作通过单纯型重心设计法探究高活性氧化钙、低活性氧化镁膨胀剂及超吸水性树脂(SAP)对UHPC收缩特性的影响规律,并借助X射线衍射分析(XRD)、水化热分析、热重分析(TG-DTG)和扫描电镜(SEM)等手段揭示钙镁膨胀剂与SAP的协同作用机理。结果表明:钙镁膨胀剂的复掺具有协同作用,在CaO的水化促进及MgO的水化抑制双重作用下,UHPC收缩补偿量大,补偿周期显著延长,对强度发展影响较小,复掺体系7 d时自收缩降低了45.3%,60 d时降低了50.41%;内养护剂SAP中的水分在逐渐释放的过程中能够促进膨胀剂的水化,导致更多膨胀产物的生成,当CaO、MgO和SAP复掺时,即使CaO、MgO和SAP掺量较低,仍能对UHPC自收缩产生较好的抑制效果并进一步延长膨胀周期。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘剑辉
杨五卫
苏炜炜
汤中亿
陈正
史才军
关键词:  超高性能混凝土  钙镁膨胀剂  内养护  单纯型重心设计法  自收缩    
Abstract: Excessive autogenous shrinkage of ultra-high performance concrete (UHPC) has always been a key problem restricting its utilization. In this work, the influence of high activity CaO-based expansive agent, low activity MgO-based expansive agent and super absorbent polymer (SAP) on the shrinkage characteristics of UHPC was investigated through the simplex-centroid mixture design method, and the synergistic mec-hanism of calcium-magnesium expansive agent and SAP was revealed with the help of X-ray diffraction analysis (XRD), heat of hydration analysis, thermogravimetric analysis (TG-DTG) and scanning electron microscopy (SEM). The results show that the compound doping of calcium-magnesium expansive agent has a synergistic effect, under the dual effect of hydration promotion of CaO and hydration inhibition of MgO, the UHPC shrinkage compensation is large, the compensation period is significantly prolonged, and the impact on the development of strength is relatively small, and the autogenous shrinkage of the compound system was reduced by 45.3% at 7 d, and by 50.41% at 60 d. The water in the internal curing agent SAP is able to be gradually released to promote the hydration of the expansive agent during this process, resulting in the ge-neration of more expansion products. When CaO, MgO and SAP are mixed together, even in a low dosage, it can still produce a good inhibition effect on the autogenous shrinkage of the UHPC and further prolong the expansion period.
Key words:  ultra-high performance concrete    calcium-magnesium expansive agent    internal curing agent    simplex-centroid mixture design method    autogenous shrinkage
发布日期:  2025-09-24
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52208237)
通讯作者:  *刘剑辉,博士,广西大学土木建筑工程学院副教授。目前主要研究方向为超高性能混凝土的收缩调控、西南岩溶地区地下结构的碳酸型腐蚀、岛礁混凝土材料和固体废弃物基建材协同固碳等。liujianhui@hnu.edu.cn   
引用本文:    
刘剑辉, 杨五卫, 苏炜炜, 汤中亿, 陈正, 史才军. 钙镁膨胀剂与SAP复掺对UHPC收缩特性的影响[J]. 材料导报, 2025, 39(19): 24080191-10.
LIU Jianhui, YANG Wuwei, SU Weiwei, TANG Zhongyi, CHEN Zheng, SHI Caijun. Effect of Compounding Calcium-Magnesium Expansive Agent with SAP on the Shrinkage Performance of UHPC. Materials Reports, 2025, 39(19): 24080191-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080191  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24080191
1 Teng L, Meng W N, Khayat K H. Cement and Concrete Research, 2020, 138, 106222.
2 Kovler K, Jensen O M. Concrete International, 2005, 27(9), 39.
3 Villarreal V H. Special Publication, 2008, 256, 45.
4 Justs J, Wyrzykowski M, Bajare D, et al. Cement and Concrete Research, 2015, 76, 82.
5 Wu Z M, Shi C J, Khayat K H. Composites Part B, Engineering, 2019, 174, 107021.
6 Jensen O M, Hansen P F. Cement and Concrete Research, 1999, 29(4), 567.
7 Shen P L, Lu L N, He Y J, et al. Construction and Building Materials, 2018, 162, 512.
8 Soliman A, Nehdi M. Cement and Concrete Composites, 2014, 46, 81.
9 Polat R, Demirboğa R, Karagöl F. Construction and Building Materials, 2017, 156, 208.
10 Temiz H, Kantarci F, Inceer M E. Construction and Building Materials, 2015, 94, 528.
11 Li M, Liu J P, Tian Q, et al. Construction and Building Materials, 2017, 145, 354.
12 Shen P L, Lu L N, He Y J, et al. Cement & Concrete Composites, 2020, 105.
13 Yan P Y, Qin X. Cement and Concrete Research, 2001, 31(2), 335.
14 Yang G, Wang H, Wan-Wendner R, et al. Construction and Building Materials, 2022, 357, 129281.
15 Liu L M, Fang Z, Huang Z Y, et al. Composites Part B, Engineering, 2022, 230, 109503.
16 Cao F Z. Expansive mechanism of MgO expansive agent and its application in the shrinkage-compensating cementitious materials. Ph. D. Thesis, Tsinghua University, China, 2021 (in Chinese).
曹丰泽. MgO膨胀剂的作用机理及在补偿收缩水泥基材料中的应用. 博士学位论文, 清华大学, 2021.
17 Mo L W, Deng M, Tang M S, et al. Cement and Concrete Research, 2014, 57, 1.
18 Zheng X G, Han M, Liu L L. Materials, 2021, 14(12), 3232.
19 Liu L M, Fang Z, Huang Z Y, et al. Journal of the Chinese Ceramic Society, 2020, 48(11), 1706 (in Chinese).
刘路明, 方志, 黄政宇, 等. 硅酸盐学报, 2020, 48(11), 1706.
20 Jiao D W, Shi C J, Yuan Q, et al. Cement and Concrete Composites, 2018, 89, 76.
21 Liu J H. Internal curing of SAP and FLWA in ultra-high performance concrete. Ph. D. Thesis, Hunan University, China, 2019 (in Chinese).
刘剑辉. SAP与FLWA在超高性能混凝土中的内养护作用. 博士学位论文, 湖南大学, 2019.
22 Liu L M. Investigation on preparation, properties, and application of expansive UHPC. Ph. D. Thesis, Hunan University, China, 2022 (in Chinese).
刘路明. 微膨胀超高性能混凝土的配制和性能及工程应用. 博士学位论文, 湖南大学, 2022.
23 Cui Y, Li Y H, Wang Q. Journal of Building Engineering, 2023, 68, 106079.
24 Wyrzykowski M, Hu Z L, Ghourchian S, et al. Materials and Structures, 2017, 50, 1.
25 Jensen O M, Hansen P F. Cement and Concrete Research, 2002, 32(6), 973.
26 Liu J H, Farzadnia N, Shi C J, et al. Construction and Building Materials, 2019, 215, 799.
27 Zhou W J. Design and preparation of low shrinkage ultra-high perfor-mance concrete and study on shrinkage reduction mechanism. Master's Thesis, Southeast University, China, 2019 (in Chinese).
周文静. 低收缩超高性能混凝土的设计制备及其减缩机理研究. 硕士学位论文, 东南大学, 2019.
28 Ghantous R M, Farnam Y, Unal E, et al. Cement and Concrete Compo-sites, 2016, 73, 185.
29 Ibáñez J, Artús L, Cuscó R, et al. Journal of Raman Spectroscopy, 2007, 38(1), 61.
30 El-Hassan H, Shao Y X. Cement and Concrete Composites, 2015, 62, 168.
31 Wei Y P, Li S C, Wang Y Z, et al. Bulletin of the Chinese Ceramic Society, DOI:10.16552/j.cnki.issn1001-1625.2023.09.029 (in Chinese).
韦亚平, 李绍成, 王有志, 等. 硅酸盐通报, DOI:10.16552/j.cnki.issn1001-1625.2023.09.029.
32 Shi C J, Wang D H, An X P, et al. Journal of the Chinese Ceramic Society, 2018, 46(2), 230 (in Chinese).
史才军, 王德辉, 安晓鹏, 等. 硅酸盐学报, 2018, 46(2), 230.
33 Yang L, Shi C J, Wu Z M. Composites Part B, Engineering, 2019, 178, 107456.
34 Chatterji S. Cement and Concrete Research, 1995, 25(1), 51.
35 Su X, Ren Z G, Li P P. Cement and Concrete Composites, 2024, 149, 105519.
36 Kang S H, Hong S G, Moon J. Construction and Building Materials, 2018, 172, 29.
[1] 王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
[2] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[3] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[4] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[5] 王鹏举, 朋羽程, 丁宏, 王伟, 朋改非. 电石渣激发的无水泥超高强砂浆力学性能与微观结构特征[J]. 材料导报, 2025, 39(16): 24070056-9.
[6] 牛旭婧, 郭晨怡, 吴家奕, 张佳豪, 朋改非, 丁宏. 碳化硅晶须对超高性能混凝土力学性能的影响[J]. 材料导报, 2025, 39(15): 24050200-8.
[7] 杨雨, 黄斌, 黄伟, 龚明子, 潘阿馨, 陈庆丰, 陈宝春, 韦建刚. UHPC中纤维间距折减效应试验与模拟研究[J]. 材料导报, 2025, 39(14): 24070154-8.
[8] 余雪娟, 郑晓博, 刘建忠, 韩方玉, 沙建芳, 方若全. 超细粉体和减水剂对超高性能混凝土新拌性能的影响[J]. 材料导报, 2025, 39(10): 24030270-6.
[9] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[10] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[11] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[12] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[13] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[14] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[15] 马梦阳, 贺行洋, 熊光, 李欣懋, 龙勇, 王福龙. 二水磷石膏-电石渣-镍铁渣三元胶凝体系的性能与微观结构[J]. 材料导报, 2024, 38(13): 22080048-5.
[1] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[2] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[3] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[4] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
[5] TIAN Hanwei, WANG Aiqin, XIE Jingpei, CHANG Qinghua, LIU Shuaiyang. Optimization of Cast-Rolling Process of Copper Aluminum Composite Plate and Experimental Analysis[J]. Materials Reports, 2019, 33(10): 1706 -1711 .
[6] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[7] NING Honglong, ZHU Zhennan, CAI Wei, WEI Jinglin, ZHOU Shangxiong, TAO Ruiqiang, CHEN Jianqiu,LIU Xianzhe, YAO Rihui, PENG Junbiao. Interfacial Wetting in Inkjet Printing[J]. Materials Reports, 2019, 33(19): 3236 -3241 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[10] JU Dianchun, WU Zhaoyong, ZHANG Rongliang, WANG Haifeng, WANG Feng, YAN Dingliu. Study on Microwave Heating Mg/TiO2 Mixture[J]. Materials Reports, 2020, 34(Z1): 140 -143 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed