Please wait a minute...
材料导报  2025, Vol. 39 Issue (19): 24070037-5    https://doi.org/10.11896/cldb.24070037
  无机非金属及其复合材料 |
Cr3+掺杂对h-LuMnO3晶格畸变和磁有序的影响
曹鹤芳1,*, 张爱梅2, 吕锦彬1, 李强1, 绳星星1
1 新疆第二医学院生物医学工程学院,新疆 克拉玛依 834000
2 河海大学力学与工程科学学院,南京 210000
Effect of Cr3+ Doping on Lattice Distortion and Magnetic Order of h-LuMnO3
CAO Hefang1,*, ZHANG Aimei2, LYU Jinbin1, LI Qiang1, SHENG Xingxing1
1 College of Biomedical Engineering, Xinjiang Second Medical College, Karamay 834000, Xinjiang, China
2 School of Mechanics and Engineering Science, Hohai University, Nanjing 210000, China
下载:  全 文 ( PDF ) ( 6793KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用固相法制备了LuMn1-xCrxO3 (0≤x≤0.15)系列样品,研究了Cr3+对LuMn1-xCrxO3晶格畸变和磁性能的影响。XPS结果表明,LuMnO3中Cr元素是正三价的,Cr3+掺杂会诱导Mn3+向Mn4+转变,导致Mn3+/Mn4+比例降低。XRD结果表明,样品皆为六角相,Mn-O键长和键角的变化说明Mn3+的三聚作用减弱,MnO5双锥的倾斜角减小。拉曼散射的结果与XRD结果可相互印证。磁化强度-温度曲线证明样品中存在弱铁磁性。同时LuMn1-xCrxO3 (0≤x≤0.1)样品中反铁磁转变温度随Cr3+掺杂浓度的提高由91 K升高到106 K,说明Cr3+的掺杂增强了样品的反铁磁序。LuMn1-xCrxO3样品中反铁磁耦合增强的原因是Mn3+三聚反应、铁磁双交换作用与反铁磁超交换作用三者之间竞争的结果,其中Mn3+-O2--Mn3+、Mn4+-O2--Mn4+、Cr3+-O2--Cr3+反铁磁超交换作用占主导地位。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹鹤芳
张爱梅
吕锦彬
李强
绳星星
关键词:  LuMnO3  结构畸变  W-H-ISM模型  反铁磁超交换作用  磁有序    
Abstract: In this work, a series of LuMn1-xCrxO3 (0≤x≤0.15) samples were prepared by conventional solid-state reaction method, and the effect of Cr3+ on the lattice distortion and magnetic properties LuMnO3 were investigated. The XPS results showed that the Cr element in LuMn1-xCrxO3 was positive trivalent, and Cr3+ doping would induce the transformation of Mn3+ ions into Mn4+ ions, leading to a lower Mn3+ to Mn4+ ratio. The results of XRD showed that the samples were hexagonal structure. The changes of Mn-O bond lengths and Mn-O-Mn bond angles indicated that the tri-merization of Mn3+ ions was weakened and the tilting angle of MnO5 bipyramids was decreased. The results of Raman scattering are mutually ve-rified with the XRD results. The temperature dependence on magnetization (M-T) curves proved that weak ferromagnetism exists in the samples. At the same time, the antiferromagnetic transition temperature of LuMn1-xCrxO3 (0≤x≤0.1) samples was enhanced from 91 K to 106 K with the increase of Cr3+ doping concentration, indicating that the antiferromagnetic order was enhanced by the Cr3+ doping. The enhancement of antiferromagnetic coupling in LuMn1-xCrxO3 samples was due to competition between Mn3+ ion trimerization, ferromagnetism double exchange and antiferromagnetic super exchange, in which the antiferromagnetic super exchange of Mn3+-O2--Mn3+、Mn4+-O2--Mn4+ and Cr3+-O2--Cr3+ predominate.
Key words:  LuMnO3    structure distortion    Williamson-Hall-isotropic strain model    antiferromagnetic super exchange interaction    magnetic order
出版日期:  2025-10-10      发布日期:  2025-09-24
ZTFLH:  O469  
  O441  
基金资助: 克拉玛依市创新环境建设计划(创新人才)项目(2024hjcxrc0107);新疆第二医学院青年科学基金(QK202201;QK202307)
通讯作者:  *曹鹤芳,硕士,新疆第二医学院讲师。目前主要从事多铁材料等方面的研究工作。1109468232@qq.com   
引用本文:    
曹鹤芳, 张爱梅, 吕锦彬, 李强, 绳星星. Cr3+掺杂对h-LuMnO3晶格畸变和磁有序的影响[J]. 材料导报, 2025, 39(19): 24070037-5.
CAO Hefang, ZHANG Aimei, LYU Jinbin, LI Qiang, SHENG Xingxing. Effect of Cr3+ Doping on Lattice Distortion and Magnetic Order of h-LuMnO3. Materials Reports, 2025, 39(19): 24070037-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070037  或          https://www.mater-rep.com/CN/Y2025/V39/I19/24070037
1 Eslem Kisa A, Demircan O. Journal of Sol-Gel Science and Technology, 2017, 82, 352.
2 Zhang Z, Xu X, Zhang J, et al. Journal of Membrane Science, 2018, 563, 617.
3 Ahmed T, Walia S, Mayes E L H, et al. Applied Materials Today, 2018, 11, 280.
4 Valderrama G, Kiennemann A, de Navarro C U, et al. Applied Catalysis A, 2018, 565, 26.
5 Johnson R D, Radaelli P G. Annual Review of Materials Research, 2014, 44, 269.
6 Lorenz B. International Scholarly Research Notices, 2013, 2013, 031958.
7 Solovyev I V, Valentyuk M V, Mazurenko V V. Physical Review B, 2012, 86(5), 054407.
8 Fontcuberta J. Comptes Rendus Physique, 2015, 16(2), 204.
9 Zhang C, Zhang X, Sun Y, et al. Physical Review B, 2011, 83(5), 054104.
10 Halder S, Sheikh M S, Ghosh B, et al. Ceramics International, 2017, 43(14), 11097.
11 Basistyy R, Stanislavchuk T N, Sirenko A A, et al. Physical Review B, 2014, 90(2), 024307.
12 Zhendong Fu, Harikrishnan S. Nair, Yinguo Xiao, et al. Physical Review B, 2016, 94(12), 125150.
13 Wan F, Bai X, Song K, et al. Journal of Magnetism and Magnetic Materials, 2017, 424, 371.
14 Saxena P, Mishra A. Journal of Solid State Chemistry, 2021, 301, 122364.
15 Sharma P K, Pramanik M, Limaye M V, et al. The Journal of Physical Chemistry C, 2023, 127(33), 16259.
16 Fu D, Liu Y, Zhang H, et al. Journal of Alloys and Compounds, 2018, 735, 1052.
17 Biesinger M C, Payne B P, Grosvenor A P, et al. Applied Surface Science, 2011, 257(7), 2717.
18 Paul P, Rajarajan A K, Debnath A K, et al. Journal of Magnetism and Magnetic Materials, 2020, 503, 166617.
19 Venkateswarlu K, Bose A C, Rameshbabu N. Physica B Condensed Matter, 2010, 405(20), 4256.
20 Guo L, Zhou Z, Yuan H. Journal of Alloys and Compounds, 2014, 616, 454.
21 Sharma P A, Ahn J S, Hur N, et al. Physical Review Letters, 2004, 93(17), 177202.
22 Masuno A, Ishimoto A, Moriyoshi C, et al. Inorganic Chemistry, 2015, 54(19), 9432.
23 Cao H F, Zhang A M, Cui J Y, et al. Solid State Communications, 2020, 306, 113753.
24 Iliev M N, Lee H G, Popov V N, et al. Physical Review B, 1997, 56(5), 2488.
25 Vermette J, Jandl S, Mukhin A A, et al. Journal of Physics Condensed Matter, 2010, 22(35), 356002.
26 Das R, Jaiswal A, Adyanthaya S, et al. The Journal of Physical Chemistry C, 2010, 114(28), 12104.
27 Paul A, Sharma P, Waghmare U V. Physical Review B, 2015, 92(5), 054106.
28 Nair H S, Fu Z, Kumar C M N, et al. Europhysics Letters, 2015, 110(3), 37007.
29 Capriotti L, Cuccoli A, Tognetti V, et al. Physical Review B, 1999, 60(10), 7299.
30 Hur N, Park S, Sharma P A, et al. Nature, 2004, 429(6990), 392.
[1] 夏梓文, 梁平, 冯扬, 杨伟业, 彭鸿雁, 赵世华. 不同水热制备条件对ZnO纳米材料性能的影响[J]. 材料导报, 2025, 39(16): 24070151-12.
[2] 苗瑞霞, 贾小坛, 牛佳美, 晏杰. 二维Janus Ga2SSe/β-Ga2O3异质结在双轴应变调控下的电子及光学特性[J]. 材料导报, 2025, 39(14): 24070065-7.
[3] 蒋旭浩, 刘远超, 李耑, 徐一帆, 刘新昊, 李梓硕. 层状堆叠对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(12): 24070118-6.
[4] 申笠蒙, 李玺, 张博. 点缺陷对二维锡烯材料结构、电学和磁学性质影响的第一性原理研究[J]. 材料导报, 2025, 39(12): 24050023-6.
[5] 蒋旭浩, 刘远超, 李耑, 徐一帆, 李梓硕, 刘新昊. B、N掺杂对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(10): 24050034-7.
[6] 梁平, 夏梓文, 冯扬, 杨伟业, 彭鸿雁, 赵世华. 不同制备条件下ZnO:X%Eu的光电特性研究[J]. 材料导报, 2025, 39(10): 24040188-6.
[7] 续丽辉, 朱兴忠, 徐娟, 阚彩侠. 金纳米星的合成与应用[J]. 材料导报, 2025, 39(6): 23090180-15.
[8] 安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
[9] 苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
[10] 刘雨昕, 胡倩, 粟茵, 文麒麟, 刘丽欣, 覃钺, 梁露露, 张宏志, 朱静. 具有高热稳定性Sm3+激活硼磷酸盐Na3B6PO13橙红色荧光粉的发光特性[J]. 材料导报, 2024, 38(21): 23080106-6.
[11] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[12] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[13] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[14] 王宁, 马晓波, 侯毅, 郑富, 曹志杰. 金属诱导制备纳米晶硅薄膜的研究进展[J]. 材料导报, 2023, 37(21): 22050080-7.
[15] 马柯榕, 张浩, 张永帅, 李坤, 杜秀娟, 杨雯. Mn在铁素体Fe-25%Cr合金中的迁移行为研究[J]. 材料导报, 2023, 37(19): 22040395-5.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed