Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24070126-10    https://doi.org/10.11896/cldb.24070126
  无机非金属及其复合材料 |
硅烷偶联剂接枝活化废胶粉与沥青相容性及微观机理研究
田小革, 李光耀*, 高凯, 吴清浩, 黄思丹, 谢振
长沙理工大学交通运输工程学院,长沙 410114
Study on the Compatibility and Microscopic Mechanism of Silane Coupling Agent Graft-activated Waste Crumb Rubber with Asphalt
TIAN Xiaoge, LI Guangyao*, GAO Kai, WU Qinghao, HUANG Sidan, XIE Zhen
School of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China
下载:  全 文 ( PDF ) ( 41273KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了揭示硅烷偶联剂接枝活化废胶粉的微观机理,研究其与沥青基体的相容性与相互作用行为,在实验室对废胶粉进行了硅烷偶联剂KH550的接枝活化处理,并对其活化效果及微观结构特征进行了探讨。其次,基于Materials Studio分子模拟软件构建了沥青与胶粉单体及共混体系模型,通过电偶极矩、溶解度参数以及结合能指标对接枝前后胶粉与沥青的相容性及作用机理进行了分析。最后借助离析试验对模拟结果进行了验证。结果表明:废胶粉经KH550接枝活化处理后,其表面形成了一层致密的硅烷偶联薄膜。C-H键及O-H键官能团含量发生了明显变化,说明KH550成功接枝到胶粉表面。与普通胶粉相比,KH550接枝活化胶粉的极性更强,且其与沥青间的溶解度参数差值更小,结合能更大,说明接枝胶粉与沥青的相容性更好。从分子相互作用机理分析,KH550水解产物分子一端的羟基与胶粉表面的羟基发生了脱水缩合反应,而另一端的3-氨丙基基团与沥青产生了较强的物理吸附作用,从而有效增强了体系结构的相容性。此外,工艺相容性的离析试验结果与热力学相容性的分子模拟结果一致,进一步为评价活化胶粉与沥青相容性的有效方法提供了借鉴与参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田小革
李光耀
高凯
吴清浩
黄思丹
谢振
关键词:  废胶粉  硅烷偶联剂  接枝活化  相容性  相互作用  微观机理    
Abstract: To reveal the microscopic mechanism of silane coupling agent graft-activated waste crumb rubber, and its compatibility and interaction with the asphalt matrix. The waste crumb rubber was graft-activated with silane coupling agent KH550 in the laboratory, and its activation effect and microstructural characteristics wereexplored. Secondly, based on the molecular simulation software of Materials Studio, the monomer and blen-ding system model of asphalt and crumb rubber were constructed. The compatibility and interaction mechanism between asphalt and crumb rubber before and after grafting were analyzed through the indicators of electric dipole moment, solubility parameter, and binding energy. Finally, the simulation results were verified through segregation tests. The results show that a dense silane coupling film is formed on the surface of the waste crumb rubber after KH550 graft activation treatment. The content of C-H and O-H bond functional groups has changed significantly, indicating that KH550 has been successfully grafted onto the surface of the crumb rubber. Compared with ordinary crumb rubber, KH550 graft-activated crumb rubber exhibits stronger polarity, larger binding energy, and smaller difference in solubility parameters between rubber and asphalt, indicating better compatibility between the grafted crumb rubber and asphalt. From the analysis of molecular interaction mechanism, the hydroxyl groups at one end of the KH550 hydrolysis product molecule undergoes dehydration condensation with the hydroxyl groups on the surface of the rubber, while the 3-aminopropyl group at the other end exhibits strong physical adsorption with asphalt, effectively enhancing the compatibility of the system structure. Additionally, the segregation test results for process compatibility are consistent with the molecular simulation results for thermodynamic compatibility, further providing references for evaluating the effective methods of compatibility between activated crumb rubber and asphalt.
Key words:  waste crumb rubber    silane coupling agent    graft activation    compatibility    interaction    microscopic mechanism
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  U414  
基金资助: 国家自然科学基金(51978086;52278438);湖南省研究生科研创新项目(CX20210750)
通讯作者:  *李光耀,博士,从事路面材料的性能研究。851536083@qq.com   
作者简介:  田小革,博士,长沙理工大学交通运输工程学院教授、博士研究生导师。长期致力于道路工程领域的应用基础研究及工程应用。
引用本文:    
田小革, 李光耀, 高凯, 吴清浩, 黄思丹, 谢振. 硅烷偶联剂接枝活化废胶粉与沥青相容性及微观机理研究[J]. 材料导报, 2025, 39(18): 24070126-10.
TIAN Xiaoge, LI Guangyao, GAO Kai, WU Qinghao, HUANG Sidan, XIE Zhen. Study on the Compatibility and Microscopic Mechanism of Silane Coupling Agent Graft-activated Waste Crumb Rubber with Asphalt. Materials Reports, 2025, 39(18): 24070126-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070126  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24070126
1 Zheng J L, Lv S T, Liu C C. Chinese Science Bulletin, 2020, 65(30), 3219(in Chinese)
郑健龙, 吕松涛, 刘超超. 科学通报, 2020, 65(30), 3219.
2 Bao D J, Qiu J H, Yao M H, et al. Materials Research and Application, 2023, 17(1), 166 (in Chinese).
宝鼎晶, 邱剑辉, 姚明辉, 等. 材料研究与应用, 2023, 17(1), 166.
3 Li D N, Leng Z, Zhang S W, et al. Resources, Conservation & Recycling, 2022, 185, 106506.
4 Lv Q, Huang W D, Zheng M, et al. Construction and Building Materials, 2022, 348, 128716.
5 Yao Z, Zhang L B, Liang P F, et al. Materials Reports, 2022, 36(16), 101(in Chinese)
姚震, 张凌波, 梁鹏飞, 等. 材料导报, 2022, 36(16), 101.
6 Lei Y, Wang H, Fini E H, et al. Construction and Building Materials, 2018, 191, 692.
7 Liang M, Xin X, Fan W, et al. Construction and Building Materials, 2015, 74, 124.
8 Xu G J, Fan J W, Ma T, et al. Materials Reports, 2022, 36(16), 5(in Chinese)
徐光霁, 范剑伟, 马涛, 等. 材料导报, 2022, 36(16), 5.
9 Ma T, Chen C L, Zhang Y, et al. China Journal of Highway and Transport, 2021, 34(10), 1(in Chinese).
马涛, 陈葱琳, 张阳, 等. 中国公路学报, 2021, 34(10), 1.
10 Xiao J J, Qiu Z M, Jin F, et al. New Chemical Materials, 2015, 43(11), 120(in Chinese).
肖建军, 邱祖民, 金斐, 等. 化工新型材料, 2015, 43(11), 120.
11 Xu O, Li M, Hou D, et al. Construction and Building Materials, 2020, 256, 119440.
12 Colom X, Falip A, Formela K, et al. Polymer Testing, 2016, 52, 200.
13 Li J, Chen Z X, Xiao F P, et al. Resources, Conservation & Recycling, 2021, 169, 105518.
14 Phiri M M, Phiri M J, Formela K, et al. Journal of Cleaner Production, 2022, 369, 133084.
15 Liu B Q, Li J, Han M Z, et al. Construction and Building Materials, 2020, 238, 117737.
16 Ou S K, Chae W B, Choi S M, et al. Journal of Materials in Civil Engineering, 2015, 27(3), 04014123-1.
17 Min Y H, Fang Y, Huang X J, et al. Applied Surface Science, 2015, 346, 497.
18 Zhang H L, Zhu C Z, Yu J Y, et al. Construction and Building Materials, 2015, 98, 735.
19 Sun L, Xin C T, Ren G L, et al. Journal of Materials in Civil Engineering, 2017, 29(3), 04016227.
20 Liu L, Liu Z H, Xiang Y, et al. Journal of Building Materials, 2017, 20(1), 150(in Chinese)
柳力, 刘朝晖, 向宇, 等. 建筑材料学报, 2017, 20(1), 150.
21 Xiang Y, Fan H J, Liu Z H, et al. Construction and Building Materials, 2020, 236, 117600.
22 Li D D, Greenfield M L. Fuel, 2014, 115, 347.
23 Guo F C, Zhang J P, Pei J Z, et al. Construction and Building Materials, 2020, 252, 118956.
24 Xu G J, Yao Y S, Ma T, et al. Construction and Building Materials, 2023, 369, 130570.
25 Huang M, Zhang H L, Gao Y, et al. International Journal of Pavement Engineering, 2021, 22(3), 319.
[1] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[2] 董沛, 刘宇欣, 张鹏, 盛扬, 孙一新, MarkBradley, 张嵘. 可生物降解壳聚糖半互穿网络水凝胶的制备及胃滞留应用[J]. 材料导报, 2025, 39(8): 24040064-9.
[3] 王鑫瑶, 韦永韬, 吴静, 王显彬, 杨文超, 湛永钟. XPS在新型齿科医用材料研究中的应用[J]. 材料导报, 2025, 39(5): 24100162-11.
[4] 张凌凯, 丁旭升, 樊培培. 新疆北部重塑性黄土的力学特性规律及微观机制试验研究[J]. 材料导报, 2025, 39(3): 23090060-10.
[5] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[6] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[7] 张明虎, 朱文杰, 陆继长, 刘江平, 罗永明. 铜铈催化剂在催化氧化中的研究进展:作用机制及结构性能调控[J]. 材料导报, 2025, 39(17): 24100145-10.
[8] 李亚莎, 晏欣悦, 王佳敏, 郭玉杰, 陈俊璋, 张永蘅. 离子影响油纸绝缘结合性能的分子动力学模拟研究[J]. 材料导报, 2025, 39(14): 24030082-8.
[9] 张婉靖, 卢燕, 商赛男, 彭锋, 边静. 木质生物质细胞壁半纤维素-纤维素相互作用研究进展[J]. 材料导报, 2025, 39(13): 24050153-7.
[10] 张悦, 管千慧, 周政, 陈全, 吴敏, 易鹏. 纳米颗粒和微生物相互作用过程中生物膜的形成机制与效应[J]. 材料导报, 2025, 39(12): 24050009-9.
[11] 凡涛涛, 韩松凯, 司春棣. 紫外老化对硫酸钙晶须改性沥青疲劳性能的影响[J]. 材料导报, 2025, 39(11): 24040015-6.
[12] 丁鉴峒, 谌阳, 宋坤, 张立佳, 孟赟慧, 李晓白, 潘梦瑶, 马洪伟. 纤维素基光子晶体的研究进展[J]. 材料导报, 2025, 39(1): 24100081-9.
[13] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[14] 邱靖, 胡剑, 陈绵, 衣玉玮. 表面自纳米化医用金属材料的研究进展[J]. 材料导报, 2024, 38(23): 23070239-10.
[15] 刘世盟, 郭乃胜, 崔世超, 褚召阳, 赵近川. PDA/GO/PUF聚氨酯泡沫的力学与隔热性能及其微观机理[J]. 材料导报, 2024, 38(22): 23110080-9.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed