Please wait a minute...
材料导报  2025, Vol. 39 Issue (13): 24050153-7    https://doi.org/10.11896/cldb.24050153
  高分子与聚合物基复合材料 |
木质生物质细胞壁半纤维素-纤维素相互作用研究进展
张婉靖1,2,†, 卢燕1,†, 商赛男1, 彭锋1, 边静1,*
1 北京林业大学林木生物质化学北京市重点实验室,北京 100083
2 华侨大学分析测试中心,福建 厦门 362021
Research Progress on the Interactions of Hemicellulose-Cellulose in the Plant Cell Wall of Woody Biomass
ZHANG Wanjing1,2,†, LU Yan1,†, SHANG Sainan1, PENG Feng1, BIAN Jing1,*
1 Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
2 Instrumental Analysis Center, Huaqiao University, Xiamen 361021, Fujian, China
下载:  全 文 ( PDF ) ( 5848KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 木质生物质是地球上最丰富、最廉价的可再生资源,利用其生产生物质材料、能源及化学品是当前生物质转化领域的研究热点。作为木质生物质细胞壁的主要组分,纤维素的高值化应用与其结构密切相关。半纤维素-纤维素相互作用是影响纤维素结构的重要因素,对其进行深入研究可为纤维素高值化应用提供理论依据。本文简述了纤维素和半纤维素的结构,归纳了半纤维素对纤维素结构与性能的影响,总结了影响半纤维素-纤维素相互作用的关键因素,重点综述了当前研究半纤维素-纤维素相互作用的主要方法,包括实验吸附法、仪器分析法、分子模拟计算法、模型物法以及基因改造法,梳理了各方法的原理、表征技术及其优缺点。最后,本文展望了半纤维素-纤维素相互作用的研究策略及其在实际应用中的前景,以期为木质生物质利用及林木基因改良育种提供重要的科学基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张婉靖
卢燕
商赛男
彭锋
边静
关键词:  木质生物质 半纤维素 纤维素 相互作用    
Abstract: Woody biomass is the most abundant and cost-effective renewable resource on earth. It has emerged as a hot research topic to use woody biomass as a raw material to generate biomass materials, energy and chemicals in the field of biomass conversion. Cellulose is the predominant constituent of the plant cell wall and its high-value conversion is closely related to the structure. The interaction between hemicellulose and cellulose plays an important role in the cellulose structure, and its further study can provide theoretical basis for the application of high-value cellulose. In this paper, the structure of cellulose and hemicellulose is briefly described. The effects of hemicellulose on the structure and properties of cellulose and the key factors affecting the interaction between hemicellulose and cellulose are summarized. Then, it mainly focuses on the main study methods of hemicellulose-cellulose interaction, including experimental adsorption, instrumental analysis, molecular simulation, mode-ling and genetic modification. The principles, characterization approaches as well as the advantages and disadvantages of each method are tho-roughly reviewed. Finally, the research strategy of hemicellulose-cellulose interactions and its prospect in practice are discussed in order to provide an important scientific basis for the utilization of woody biomass and genetic improvement and breeding of forest trees.
Key words:  woody biomass    hemicellulose    cellulose    interaction
出版日期:  2025-07-10      发布日期:  2025-07-21
ZTFLH:  TQ352.1  
基金资助: 国家自然科学基金(32271804)
通讯作者:  *边静,博士,北京林业大学材料科学与技术学院副教授、博士研究生导师。主要从事木质生物质细胞壁组分高值化利用基础研究。bianjing31@bjfu.edu.cn   
作者简介:  张婉靖,硕士,华侨大学分析测试中心助理实验师。主要从事生物质高值化利用的基础研究。
卢燕,北京林业大学材料科学与技术学院硕士研究生,主要从事改性细菌纤维素基复合膜的制备及性能研究。
†共同第一作者
引用本文:    
张婉靖, 卢燕, 商赛男, 彭锋, 边静. 木质生物质细胞壁半纤维素-纤维素相互作用研究进展[J]. 材料导报, 2025, 39(13): 24050153-7.
ZHANG Wanjing, LU Yan, SHANG Sainan, PENG Feng, BIAN Jing. Research Progress on the Interactions of Hemicellulose-Cellulose in the Plant Cell Wall of Woody Biomass. Materials Reports, 2025, 39(13): 24050153-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050153  或          https://www.mater-rep.com/CN/Y2025/V39/I13/24050153
1 Arevalo-Gallegos A, Ahmad Z, Asgher M, et al.International Journal of Biological Macromolecules, 2017, 99, 308.
2 Liu Z C, Yi X D, Gao F X, et al.Acta Physico-Chimica Sinica, 2023, 39(1), 2112029 (in Chinese).
刘志成, 伊晓东, 高飞雪, 等. 物理化学学报, 2023, 39(1), 2112029.
3 Huang C, Li L G.Chinese Science Bulletin, 2016, 61(34), 3623 (in Chinese).
黄成, 李来庚. 科学通报, 2016, 61(34), 3623.
4 Li T, Chen C J, Brozena A H, et al.Nature, 2021, 590, 47.
5 Ling Z, Wang J J, Zhao J Y, et al.Bioresource Technology, 2023, 369, 128381.
6 Ciesielski P N, Pecha M B, Lattanzi A M, et al.ACS Sustainable Che-mistry & Engineering, 2020, 8, 3512.
7 Kang X, Kirui A, Dickwella W M C, et al.Nature Communications, 2019, 10, 347.
8 Terrett O M, Lyczakowski J J, Yu L, et al.Nature Communications, 2019, 10, 4978.
9 Pei J C.Lignocellulosic chemistry (fifth edition), China Light Industry Press, China, 2020, pp. 135 (in Chinese).
裴继诚. 植物纤维化学(第五版), 中国轻工业出版社, 2020, pp. 135.
10 Klemm D, Heublein B, Fink H P, et al.Angewandte Chemie International Edition, 2005, 44(22), 3358.
11 Yousefi H, Nishino T, Faezipour M, et al.Biomacromolecules, 2011, 12, 4080.
12 Jin K X, Jiang Z H, Liu X E, et al.Materials Reports, 2019, 33(17), 2997 (in Chinese).
金克霞, 江泽慧, 刘杏娥, 等. 材料导报, 2019, 33(17), 2997.
13 Peng F. Isolation, fractionation, characterization and modification of hemicellulose from agricultural and forestry biomass. Ph. D. Thesis, South China University of Technology, China, 2010 (in Chinese).
彭锋. 农林生物质半纤维素分离纯化、结构表征及化学改性的研究. 博士学位论文. 华南理工大学, 2010.
14 Liu X X. Preparation and performance regulation of xylan nanocomposite intelligence hydrogels. Ph. D. Thesis, South China University of Technology, China, 2019 (in Chinese).
刘昕昕. 木聚糖纳米复合智能水凝胶的制备及性能调控的研究. 博士学位论文. 华南理工大学, 2019.
15 Salmén L, Burgert I.Holzforschung, 2009, 63, 121.
16 Benselfelt T, Cranston E D, Ondaral S, et al.Biomacromolecules, 2016, 17, 2801.
17 Martínez-Sanz M, Lopez-Sanchez P, Gidley M J, et al.Cellulose, 2015, 22, 1541.
18 Penttila P A, Imai T, Sugiyama J.International Journal of Biological Macromolecules, 2017, 102, 111.
19 Shah R, Huang S, Pingali S V, et al.Biomacromolecules, 2019, 20, 893.
20 Navi P, Stanzl-Tschegg S.Holzforschung, 2009, 63, 186.
21 Zhang S Y. Chemical components effect on mechanical properties of wood cell wall. Ph. D. Thesis, Chinese Academy of Forestry, China, 2011 (in Chinese).
张双燕. 化学成分对木材细胞壁力学性能影响的研究. 博士学位论文, 中国林业科学研究院, 2011.
22 Berglund J, Mikkelsen D, Flanagan B M, et al.Nature Communications, 2020, 11, 4692.
23 Liu J, Chinga-Carrasco G, Cheng F, et al.Cellulose, 2016, 23, 3129.
24 Vilaseca F, Serra A, Kochumalayil J J.Carbohydrate Polymers, 2020, 229, 115540.
25 Qing Q, Wyman C E.Biotechnology for Biofuels, 2011, 4, 18.
26 Kumar R, Bhagia S, Smith M D, et al.Green Chemistry, 2018, 20, 921.
27 Iwata T, Indrarti L, Azuma J I.Cellulose, 1998, 5, 215.
28 Tokoh C, Takabe K, Fujita M, et al.Cellulose, 1998, 5(4), 249.
29 Whitney S E C, Brigham J E, Darke A H, et al.Carbohydrate Research, 1998, 307, 299.
30 Liu J Y, Wang H C, Yin Y, et al.Carbohydrate Polymers, 2012, 89(1), 158.
31 Khodayari A, Thielemans W, Hirn U, et al.Carbohydrate Polymers, 2021, 270, 118364.
32 Kohnke T, Ostlund A, Brelid H.Biomacromolecules, 2011, 12, 2633.
33 Park Y B, Lee C M, Kafle K, et al.Biomacromolecules, 2014, 15, 2718.
34 Villares A, Moreau C, Dammak A, et al.Soft Matter, 2015, 11, 6472.
35 Dammak A, Quemener B, Bonnin E, et al.Biomacromolecules, 2015, 16, 589.
36 Kishani S, Vilaplana F, Ruda M, et al.Biomacromolecules, 2020, 21, 772.
37 Chen M, Cathala B, Lahaye M.Carbohydrate Polymers, 2022, 296, 119994.
38 Gu J, Catchmark J M.Cellulose, 2013, 20, 1613.
39 Kong Y, Li L, Fu S.Journal of Materials Chemistry A, 2022, 10, 14451.
40 Kishani S, Benselfelt T, Wagberg L, et al.Journal of Colloid and Interface Science, 2021, 588, 485.
41 Pereira C S, Silveira R L, Dupree P, et al.Biomacromolecules, 2017, 18, 1311.
42 Wang X, Li K, Yang M, et al.Cellulose, 2016, 24, 35.
43 Berglund J, Kishani S, de Carvalho D M, et al.ACS Sustainable Chemistry & Engineering, 2020, 8, 10027.
44 Stimpson T C, Cathala B, Moreau C, et al.Biomacromolecules, 2020, 21, 3898.
45 Lin Q X, Liu X X, Li L B, et al.Biomass Chemical Engineering, 2022, 56(3), 47 (in Chinese).
林琦璇, 刘昕昕, 李理波, 等. 生物质化学工程, 2022, 56(3), 47.
46 Ren Z C, Sun H, Zhou X Y, et al.Composites Part A:Applied Science and Manufacturing, 2023, 164, 107310.
47 Lin D H, Lopez-Sanchez P, Gidley M J.Food Hydrocolloids, 2019, 96, 644.
48 Bromley J R, Busse-Wicher M, Tryfona T, et al.The Plant Journal, 2013, 74, 423.
49 Simmons T J, Mortimer J C, Bernardinelli O D, et al.Nature Communications, 2016, 7, 13902.
50 Zhang Y, Yu J, Wang X, et al.Science, 2021, 372, 706.
51 Lee C H, Teng Q, Zhong R Q, et al.Plant Signaling & Behavior, 2014, 9(2), 27797.
52 Moser C, Backlund H, Lindstrom M, et al.Nordic Pulp & Paper Research Journal, 2018, 33, 194.
53 Kabel M A, van den Borne H, Vincken J P, et al.Carbohydrate Polymers, 2007, 69, 94.
54 Lucenius J, Valle-Delgado J J, Parikka K, et al.Journal of Colloid and Interface Science, 2019, 555, 104.
55 Westbye P, Svanberg C, Gatenholm P.Holzforschung, 2006, 60, 143.
56 Pirich C L, de Freitas R A, Torresi R M, et al.Biosensors & Bioelectronics, 2017, 92, 47.
57 Sanchez-Osorno D M, Gomez-Maldonado D, Castro C, et al.Molecules, 2020, 25(18), 4041.
58 Zhang P Q, Ma Y Y, Cui M, et al.Biomacromolecules, 2020, 21, 1776.
59 Hu G, Heitmann J A, Rojas O J.The Journal of Physical Chemistry B, 2009, 113, 14761.
60 Eronen P, Österberg M, Heikkinen S, et al.Carbohydrate Polymers, 2011, 86, 1281.
61 Ralston J, Larson I, Rutland M W, et al.Pure and Applied Chemistry, 2005, 77, 2149.
62 Nypelo T, Laine C, Colson J, et al.Carbohydrate Polymers, 2017, 177, 126.
63 Dolan G K, Cartwright B, Bonilla M R, et al.Carbohydrate Polymers, 2019, 208, 97.
64 Huang J B. Molecular simulation study of pyrolysis mechanism of cellulose. Ph. D. Thesis, Chongqing University, China, 2010 (in Chinese).
黄金保. 纤维素快速热解机理的分子模拟研究. 博士学位论文, 重庆大学, 2010.
65 Miao Q. Process simulation and economic evaluation of bio-butanol from biomass straw. Master’s Thesis, Beijing University of Chemical Technology, China, 2017 (in Chinese).
苗奇. 生物质秸秆生产生物丁醇的过程模拟优化与经济评价. 硕士学位论文, 北京化工大学, 2017.
66 Falcoz-Vigne L, Ogawa Y, Molina-Boisseau S, et al.Cellulose, 2017, 24, 3725.
67 Berglund J, d’Ortoli T A, Vilaplana F, et al.The Plant Journal, 2016, 88, 56.
68 Busse-Wicher M, Gomes T C, Tryfona T, et al.The Plant Journal, 2014, 79, 492.
69 Zhang N, Li S, Xiong L M, et al.Modelling and Simulation in Materials Science and Engineering, 2015, 23(8), 085010.
70 Zhu X D, Du Y Y, Yuan X B, et al.Polymer Bulletin, 2022, 277(5), 17 (in Chinese).
朱晓东, 杜昀怡, 原续波, 等. 高分子通报, 2022, 277(5), 17.
71 Li Z F, Cao X, Zhu J, et al.Food Science, 2020, 41(19), 263 (in Chinese).
李昭锋, 曹潇, 朱杰, 等. 食品科学, 2020, 41(19), 263.
72 Kuo C H, Chen J H, Liou B K, et al.Food Hydrocolloids, 2016, 53, 98.
73 Zhang W J, Yang J Y, Lu Y, et al.Carbohydrate Polymers, 2023, 301, 120292.
74 Grantham N J, Wurman-Rodrich J, Terrett O M, et al.Nature Plants, 2017, 3, 859.
[1] 安玉龙, 刘灿, 徐开蒙, 郑云武, 林旭. 生物质碳点荧光材料在生物医药领域中的应用[J]. 材料导报, 2022, 36(22): 20100133-12.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed