Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24100145-10    https://doi.org/10.11896/cldb.24100145
  金属与金属基复合材料 |
铜铈催化剂在催化氧化中的研究进展:作用机制及结构性能调控
张明虎1,2,3, 朱文杰1,2,3,*, 陆继长1,2,3, 刘江平1,2,3, 罗永明2,3,4
1 昆明理工大学环境科学与工程学院,昆明 650500
2 昆明理工大学挥发性有机物污染防治与资源化省创新团队,昆明 650500
3 云南省高校恶臭挥发性有机物控制重点实验室,昆明 650500
4 昆明理工大学化学工程学院,昆明 650500
Research Progress of Copper-Cerium Catalysts in Catalytic Oxidation: Mechanism and Regulation of Structural Properties
ZHANG Minghu1,2,3, ZHU Wenjie1,2,3,*, LU Jichang1,2,3, LIU Jiangping1,2,3, LUO Yongming2,3,4
1 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 The Innovation Team for Volatile Organic Compounds Pollutants Control and Resource Utilization of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, China
3 The Higher Educational Key Laboratory for Odorous Volatile Organic Compounds Pollutants Control of Yunnan Province, Kunming 650500, China
4 Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 27398KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜铈催化剂因来源广泛、催化性能优异,在催化氧化领域具有广阔的应用前景。近年来,研究人员对铜铈催化剂在催化氧化中的作用机制进行了深入的研究,对铜铈催化剂的结构性能调控进行了多方面的探索。本文综述了目前有关铜铈催化剂催化氧化VOCs和CO的研究进展,探讨了铜铈催化剂的电子金属-载体相互作用和非对称氧空位在催化氧化中的作用机制,总结了载体形貌、制备方法以及金属掺杂等因素对铜铈催化剂结构性能的影响,并对未来研究中可能遇到的挑战进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张明虎
朱文杰
陆继长
刘江平
罗永明
关键词:  铜铈催化剂  催化氧化  非对称氧空位  电子金属-载体相互作用  载体形貌    
Abstract: Copper-cerium catalysts have a broad application prospect in the field of catalytic oxidation due to their wide source and excellent catalytic performance. In recent years, researchers have conducted in-depth research on the mechanism of copper-cerium catalysts in catalytic oxidation, and explored the structural property regulation of copper-cerium catalyst. In this paper, the current research progresson the catalytic oxidation of VOCs and CO with copper-cerium catalysts was reviewed, the mechanism of electronic metal-support interactions and asymmetric oxygen vacancy in the catalytic oxidation of copper-cerium catalysts was discussed, and the effects of support morphologies, preparation methods and metal doping on the structural properties of copper-cerium catalysts were summarized. At last, the possible challenges in future research were prospected.
Key words:  copper-cerium catalyst    catalytic oxidation    asymmetric oxygen vacancy    electronic metal-support interaction    support morphology
发布日期:  2025-08-28
ZTFLH:  O643.36  
基金资助: 国家自然科学基金(22166021);云南省科技厅科技计划项目(202302AG050002-1);云南省中青年学术与技术带头人后备人才项目(202405AC350026)
通讯作者:  *朱文杰,昆明理工大学环境科学与工程学院教授、硕士研究生导师。目前主要从事微-介孔环境纳米材料研发、水体重金属污染防治、挥发性有机物催化降解等方面的研究工作。zhuwenjie17@163.com   
作者简介:  张明虎,昆明理工大学环境科学与工程学院硕士研究生,主要研究领域为铜铈催化剂催化氧化苯乙烯。
引用本文:    
张明虎, 朱文杰, 陆继长, 刘江平, 罗永明. 铜铈催化剂在催化氧化中的研究进展:作用机制及结构性能调控[J]. 材料导报, 2025, 39(17): 24100145-10.
ZHANG Minghu, ZHU Wenjie, LU Jichang, LIU Jiangping, LUO Yongming. Research Progress of Copper-Cerium Catalysts in Catalytic Oxidation: Mechanism and Regulation of Structural Properties. Materials Reports, 2025, 39(17): 24100145-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100145  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24100145
1 Liu Y Y. Study on Characteristics, Environmental impacts and control strategies of industrial volatile organic compounds emission. Master's Thesis, South China University of Technology, China, 2021 (in Chinese).
刘锐源. 工业源挥发性有机物排放特征、环境影响和控制策略研究. 硕士学位论文, 华南理工大学, 2021.
2 Lomonaco, Manco E, Corti A, et al. Journal of Hazardous Materials, 2020, 394, 122596.
3 Wang D, Yang Q L, Yang G P, et al. Chemical Engineering Journal, 2020, 399, 125792.
4 Pöschl U, Shiraiwa M. Chemical Reviews, 2015, 115(10), 4440.
5 Jing G J, Zhang X J, Zhang A A, et al. Applied Surface Science, 2018, 434, 445.
6 Zou Z Q, Meng M, Guo L H, et al. Journal of Hazardous Materials, 2009, 163(2-3), 835.
7 Fu S, Guo M X, Luo J M, et al. Science of the Total Environment, 2020, 744, 140825.
8 Li M, Huang Z, Kang F. Chemical Industry and Engineering, 2015, 32(3), 2.
9 Woellner M, Hausdorf S, Klein N, et al. Advanced Materials, 2018, 30(37), 1704679.
10 Zhang Y, Lu J C, Zhang L M, et al. Applied Catalysis B-Environmental, 2022, 309, 121249.
11 Zhang K, Ding H L, Pan W G, et al. Environmental Science & Technology, 2022, 56(13), 9220.
12 Wen M C, Li G Y, Liu H L, et al. Environmental Science-Nano, 2019, 6(4), 1006.
13 Zhao X T, Xu D J, Wang Y N, et al. Journal of Hazardous Materials, 2021, 407, 124349.
14 Du L Y, Wang W W, Yan H, et al. Journal of Rare Earths, 2017, 35(12), 1186.
15 Zhou C X, Zhang H L, Zhang Z, et al. Applied Surface Science, 2021, 539, 148188.
16 Shi Y J, Li Z M, Wang J L, et al. Applied Catalysis B-Environmental, 2021, 286, 119936.
17 Liao W, Zhu W J, Lu J C, et al. Applied Surface Science, 2023, 629, 157434.
18 Chen X, He F, Liu S. Reaction Kinetics Mechanisms and Catalysis, 2020, 130(2), 1063.
19 Zhang Y, Zhu W J, Lu J C, et al. Applied Catalysis B-Environment and Energy, 2024, 342, 123461.
20 Dong T, Liu W M, Ma M D, et al. Chemical Engineering Journal, 2020, 393, 124717.
21 Li J R, Wang F K, He C, et al. Powder Technology, 2020, 363, 95.
22 Guo Y L, Wen M C, Li G Y, et al. Applied Catalysis B-Environmental, 2021, 281, 119447.
23 Liu S, Wu X D, Weng D, et al. Journal of Rare Earths, 2015, 33(6), 567.
24 Hegde M S, Beraba P. Catalysis Today, 2015, 253, 40.
25 Zhang Y, Zhu W J, Fu T, et al. Journal of Molecular Catalysis, 2022, 36(1), 58 (in Chinese).
张迎, 朱文杰, 富特, 等. 分子催化, 2022, 36(1), 58.
26 Wu P, Jin X J, Qiu Y C, et al. Environmental Science & Technology, 2021, 55(8), 4268.
27 Sun H C, Wang H, Qu Z P. ACS Catalysis, 2023, 13(2), 1077.
28 Yang X Q, Ma X Y, Yu X L, et al. Applied Catalysis B-Environmental, 2020, 263, 118355.
29 Qiao B T, Liang J X, Wang A Q, et al. Nano Research, 2015, 8(9), 2913.
30 Pu T C, Zhang W H, Zhu M H. Angewandte Chemie-International Edition, 2023, 62(4), 202212278.
31 Ro I, Resasco J, Christopher P. ACS Catalysis, 2018, 8(8), 7368.
32 Van Deelen T W, Mejía C H, De Jong K P. Nature Catalysis, 2019, 2(11), 955.
33 Liu X Y, Wang A Q, Zhang T, et al. Nano Today, 2013, 8(4), 403.
34 Luo Z X, Zhao G Q, Pan H G, et al. Advanced Energy Materials, 2022, 12(37), 202201395.
35 Yang T, Lin L, Lv X M, et al. ACS Nano, 2023, 17(9), 8521.
36 Song X J, Fan S P, Cai Z H, et al. Chinese Journal of Catalysis, 2023, 49, 168.
37 Schmitt R, Nenning A, Kraynis O, et al. Chemical Society Reviews, 2020, 49(2), 554.
38 Ma Y Y, Gao W, Zhang Z Y, et al. Surface Science Reports, 2018, 73(1), 1.
39 Liu B, Li C M, Zhang G Q, et al. ACS Catalysis, 2018, 8(11), 10446.
40 Huygh S, Bogaerts A, Neyts E C. Journal of Physical Chemistry C, 2016, 120(38), 21659.
41 Liu B, Li C M, Zhang G Q, et al. New Journal of Chemistry, 2017, 41(20), 12231.
42 Miao Z Z, Zhang Y B, Pan X Q, et al. Catalysis Science & Technology, 2015, 5(2), 1314.
43 Yu K, Lei D, Feng Y J, et al. Journal of Catalysis, 2018, 365, 292.
44 Yu K, Lou L L, Liu S X, et al. Advanced Science, 2020, 7(2), 1901970.
45 Shan Y, Liu Y X, Li Y, et al. Separation and Purification Technology, 2020, 250, 117181.
46 Cui M S, Li Y, Wang X Q, et al. Journal of Rare Earths, 2013, 31(6), 572.
47 Zou H B, Dong X F, Lin W M. Applied Surface Science, 2006, 253(5), 2893.
48 Gao X, Jiang Y, Zhong Y, et al. Journal of Hazardous Materials, 2010, 174(1-3), 734.
49 Zhang J, Wu K, Xiong J X, et al. 2022, 316, 121620.
50 Paier J, Penschke C, Sauer J. Chemical Reviews, 2013, 113(6), 3949.
51 Zhou Y, Chen A L, Ning J, et al. Chinese Journal of Catalysis, 2020, 41(6), 928.
52 Chen A L, Yu X J, Zhou Y, et al. Nature Catalysis, 2019, 2(4), 334.
53 Zhao L L, Zhang Z P, Li Y S, et al. Applied Catalysis B-Environmental, 2019, 245, 502.
54 Li H L, Wu C Y, Li Y, et al. Environmental Science & Technology, 2011, 45(17), 7394.
55 Zhang X M, Tian P F, Tu W F, et al. ACS Catalysis, 2018, 8(6), 5261.
56 Martínez-arias A, Fernández-garcía M, Gálvez O, et al. Journal of Catalysis, 2000, 195(1), 207.
57 Wang W W, Yu W Z, Du P P, et al. ACS Catalysis, 2017, 7(2), 1313.
58 Wu L K, Ma P D, Zhang C H, et al. Applied Catalysis A-General, 2023, 652, 119034.
59 Jacobsen S N, Helmersson U, Erlandsson R, et al. Surface Science, 1999, 429(1-3), 22.
60 Zou Q, Zhao Y H, Jin X, et al. Applied Surface Science, 2019, 494, 1166.
61 Gao Y X, Zhang Z H, Li Z R, et al. Chinese Journal of Catalysis, 2020, 41(6), 1006.
62 Xie Y, Wu J F, Jing G J, et al. Applied Catalysis B-Environmental, 2018, 239, 665.
63 Shan W J, Feng Z C, Li Z L, et al. Journal of Catalysis, 2004, 228(1), 206.
64 Qi X M, Flytzani-stephanopoulos M. Industrial & Engineering Chemistry Research, 2004, 43(12), 3055.
65 Menon U, Galvita V V, Marin G B. Journal of Catalysis, 2011, 283(1), 1.
66 Zhou G L, Lan H, Song R Y, et al. Rsc Advances, 2014, 4(92), 50840.
67 Zhou G L, Lan H, Wang H, et al. Journal of Molecular Catalysis A-Chemical, 2014, 393, 279.
68 Zeng Y Q, Haw K G, Wang Z G, et al. Journal of Hazardous Materials, 2021, 404, 124088.
69 Das S, Ashok J, Bian Z, et al. Applied Catalysis B-Environmental, 2018, 230, 220.
70 Mao L T, Song Z X, Fan J, et al. Separation and Purification Technology, 2024, 334, 126035.
71 Ye Y C, Wang Q, Chen H, et al. Research on Chemical Intermediates, 2024, 50(7), 3351.
72 Zhu P F, Li J, Huang Q Q, et al. Journal of Natural Gas Chemistry, 2009, 18(3), 346.
73 Avgouropoulos G, Ioannides T, Matralis H. Applied Catalysis B-Environmental, 2005, 56(1-2), 87.
74 Ye Y C, Gao L J, Xu J, et al. Journal of Rare Earths, 2023, 41(6), 862.
75 Liu Y L, Li S J, Liu X Y, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2023, 658, 130671.
76 Lu H J, Tournet J, Dastafkan K, et al. Chemical Reviews, 2021, 121(17), 10271.
77 Djinovic P, Batista J, Pintar A. Applied Catalysis a-General, 2008, 347(1), 23.
78 Tang X L, Zhang B C, Li Y, et al. Catalysis Today, 2004, 93-95, 191.
79 Guo J G, Li Z, Xi H Y, et al. Journal of Chemical Industry and Engineering, 2006(4), 815 (in Chinese).
郭建光, 李忠, 奚红霞, 等. 化工学报, 2006(4), 815.
80 Yun J Y, Wu L K, Hao Q L, et al. Journal of Environmental Chemical Engineering, 2022, 10(3), 107847.
81 Ye Y C, Xu J, Gao L J, et al. Chemical Engineering Journal, 2023, 471, 144667.
82 Li W, Shen X, Zeng R, et al. Applied Surface Science, 2019, 492, 818.
83 Papadopoulos C, Kappis K, Papavasiliou J, et al. Catalysts, 2022, 12(6), 674.
84 A Avgouropoulos G, Ioannides T, Matralis H K, et al. Catalysis Letters, 2001, 73(1), 33.
85 Liu Z G, Zhou R X, Zheng X M. Journal of Molecular Catalysis A-Che-mical, 2007, 267(1-2), 137.
86 Park E D, Lee D, Lee H C. Catalysis Today, 2009, 139(4), 280
87 Sirichalprasert K, Luengnaruemitchaia, Pongstabodee S. International Journal of Hydrogen Energy, 2007, 32(7), 915.
88 He C, Yu Y K, Shen Q, et al. Applied Surface Science, 2014, 297, 59.
89 Kruemek P, Mattathankul S, Triamnak N, et al. In:Proceedings of the 26th Regional Symposium on Chemical Engineering (RSCE). Kuala Lumpur, 2019. 2020.
90 Gong L, Luo L T, Wang R, et al. Journal of the Chinese Rare Earth Society, 2011, 29(1), 41(in Chinese).
龚磊, 罗来涛, 王瑞, 等. 中国稀土学报, 2011, 29(1), 41.
91 Su X W, Jin L Y, Lu J Q, et al. Journal of Industrial and Engineering Chemistry, 2009, 15(5), 683.
92 Lu Z S, Yang Z X, He B L, et al. Chemical Physics Letters, 2011, 510(1-3), 60.
93 Gong L, Liu C X, Liu Q, et al. Catalysis Surveys from Asia, 2019, 23(1), 1.
94 Ding M L, Zhang S C, Lyu N N, et al. Journal of the Chinese Rare Earth Society, 2013, 31(3), 289(in Chinese).
丁梦林, 张思财, 吕宁宁, 等. 中国稀土学报, 2013, 31(3), 289.
95 Feng Y, Dai L Y, Wang Z W, et al. Environmental Science & Technology, 2022, 56(12), 8722.
96 Li J, Zhu P F, Zuo S F, et al. Applied Catalysis a-General, 2010, 381(1-2), 261.
97 Waikar J, LAavande N, More R, et al. Catalysis Surveys from Asia, 2020, 24(4), 269.
98 Lendzion-bielun Z, Bettahar M M, Monteverdi S. Catalysis Communications, 2010, 11(14), 1137.
99 Liu Z G, Zhou R X, Zheng X M. Journal of Natural Gas Chemistry, 2008, 17(3), 283.
100 Liu F, Chen X H, Jie W W, et al. Journal of Colloid and Interface Science, 2024, 674, 778.
101 Zhang H Y, Yu Y, Fan Y, et al. Environmental Chemistry, 2023, 42(4), 1176(in Chinese).
张鸿宇, 于颖, 樊芸, 等. 环境化学, 2023, 42(4), 1176.
102 Li Z Y, Chen J D, Jiang M, et al. Catalysis Letters, 2022, 152(9), 2729.
103 Shao S, You X Q, Li G L, et al. Fuel, 2024, 356, 129571.
[1] 罗宁, 高凤雨, 陈都, 张辰骁, 段二红, 赵顺征, 易红宏, 唐晓龙. CeMn复合氧化物的制备及氯苯催化氧化性能[J]. 材料导报, 2024, 38(16): 23050133-9.
[2] 郭静, 宋旭锋, 于艳敏, 高倩倩. 铁卟啉催化氧化邻、对硝基取代芳烃α-C-H键的密度泛函理论研究[J]. 材料导报, 2023, 37(8): 21110223-6.
[3] 黄馨月, 雷小峰, 冯文林, 吴畏, 孙权. 基于金属氧化物敏感材料的一氧化碳传感器研究进展[J]. 材料导报, 2023, 37(15): 21100240-11.
[4] 许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
[5] 王宝钦, 王犇, 冷雨凝, 王仲鹏, 李华芳, 盛会, 刘伟, 王立国. 过渡金属掺杂锡基氧化物固溶体催化碳烟燃烧[J]. 材料导报, 2022, 36(11): 21030095-6.
[6] 伊志豪, 孙杰, 李吉刚, 周添, 卫寿平, 解洪嘉, 杨育霖. 花球状CuO/CeO2材料上HCN的催化消除[J]. 材料导报, 2021, 35(8): 8017-8022.
[7] 李世杰, 黄慧娟, 文世涛, 马建锋, 刘杏娥. 负载型贵金属催化剂氧化分解甲醛的研究进展[J]. 材料导报, 2020, 34(Z1): 400-407.
[8] 殷珂, 陈瑞洋, 刘志明. 锰基氧化物上甲苯催化氧化的研究进展[J]. 材料导报, 2020, 34(23): 23051-23056.
[9] 冯勇超, 于庆君, 易红宏, 唐晓龙, 黄永海, 张媛媛, 庄瑞杰. MFI型分子筛在VOCs去除领域的研究进展[J]. 材料导报, 2020, 34(17): 17089-17098.
[10] 王灿, 陈天虎, 刘海波, 董仕伟, 韩正严, 束道兵, 王汉林. 纳米矿物材料净化甲醛污染的研究进展[J]. 材料导报, 2020, 34(15): 15003-15012.
[11] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[12] 王鹏飞, 邓宇, 郝丽梅, 邓橙, 赵蕾, 张新奇, 朱孟府. 铋掺杂二氧化锡/炭膜电催化膜的制备及表征[J]. 材料导报, 2019, 33(18): 3016-3020.
[13] 施露, 张杰, 陈蓉, 沈美庆, 单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
[14] 谭丰, 徐洋洋, 李卫, 徐明丽, 闵春刚, 史庆南, 刘锋, 杨喜昆. 在硫基功能化碳纳米管上组装壳层厚度可控的Au@Pt核壳纳米粒子以获得高的甲醇电催化氧化活性[J]. 材料导报, 2018, 32(23): 4041-4046.
[15] 姚欣蕾, 周淑君, 周涵, 范同祥. 用于CO催化氧化的负载型纳米金催化剂的研究进展*[J]. CLDB, 2017, 31(9): 97-105.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed