Please wait a minute...
CLDB  2017, Vol. 31 Issue (9): 97-105    https://doi.org/10.11896/j.issn.1005-023X.2017.09.013
  材料综述 |
用于CO催化氧化的负载型纳米金催化剂的研究进展*
姚欣蕾, 周淑君, 周涵, 范同祥
上海交通大学金属基复合材料国家重点实验室,上海 200240
A Review on Supported Gold Nanocatalysts Used for CO Catalytic Oxidation
YAO Xinlei, ZHOU Shujun, ZHOU Han, FAN Tongxiang
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 2140KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 CO作为许多工业环境和室内、室外环境的主要有毒气体污染物之一,其消除问题得到了研究者的广泛关注。利用负载型纳米金催化剂在温和条件下催化氧化CO一直是催化领域的研究热点。从载体种类、结构、制备方法和条件的角度阐述了近年来CO催化氧化负载型纳米金催化剂的研究进展,对现阶段研究存在的问题进行了总结,并展望了未来发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚欣蕾
周淑君
周涵
范同祥
关键词:  CO催化氧化  负载型纳米金催化剂  载体    
Abstract: As one of the main poisonous gases in many industry, indoor and outdoor environments, the elimination of CO has drawn extensive attention among researchers. Catalytic oxidation of CO in a mild condition with supported gold nanocatalysts is always the hotspot in catalysis field. An overview of research progress of supported gold nanocatalysts on CO oxidation is provided, covering the category and supported of supports as well as the preparation methods and conditions. The remaining challenges and prospects of the supported gold nanocatalysts on CO oxidation are summarized at the end.
Key words:  CO catalytic oxidation    supported gold nanocatalyst    support
出版日期:  2017-05-10      发布日期:  2018-05-03
ZTFLH:  X511  
基金资助: *国家杰出青年科学基金(51425103); 国家自然科学基金(51402191); 上海市优秀学术带头人基金(15XD1501900); 科技部国家国际重大科技合作专项基金(2015DFE52870)
通讯作者:  范同祥:男,1971年生,博士,教授,研究方向为特种功能金属基复合材料和生物启迪功能材料 E-mail:txfan@sjtu.edu.cn   
作者简介:  姚欣蕾:女,1992年生,硕士研究生,研究方向为纳米多孔材料 E-mail:yaoxinlei@sjtu.edu.cn
引用本文:    
姚欣蕾, 周淑君, 周涵, 范同祥. 用于CO催化氧化的负载型纳米金催化剂的研究进展*[J]. CLDB, 2017, 31(9): 97-105.
YAO Xinlei, ZHOU Shujun, ZHOU Han, FAN Tongxiang. A Review on Supported Gold Nanocatalysts Used for CO Catalytic Oxidation. Materials Reports, 2017, 31(9): 97-105.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.09.013  或          https://www.mater-rep.com/CN/Y2017/V31/I9/97
[1] Haruta M, Yamada N, Kobayashi T, et al.Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide[J]. J Catal,1989,115(2):301.
[2] Haruta M, Date M.Advances in the catalysis of Au nanoparticles[J]. Appl Catal A-Gen,2001,222(1-2):427.
[3] Haruta M.Size- and support-dependency in the catalysis of gold[J]. Catal Today,1997,36(1):153.
[4] Kozlova A P, Sugiyama S, Kozlov A I, et al.Iron-oxide supported gold catalysts derived from gold-phosphine complex Au(PPh3)-(NO3): State and structure of the support[J]. J Catal,1998,176(2):426.
[5] Schubert M M, Hackenberg S, van Veen A C, et al. CO oxidation over supported gold catalysts-“iner” and “active” support materials and their role for the oxygen supply during reaction[J]. J Catal,2001,197(1):113.
[6] Khder A S, Hassan H M A, Betiha M A, et al. CO oxidation over Au and Pd nanoparticles supported on ceria-hafnia mixed oxides[J]. React Kinet Mech Cat,2014,112(1):61.
[7] Luengnaruemitchai A, Srihamat K, Pojanavaraphan C, et al.Acti-vity of Au/Fe2O3-TiO2 catalyst for preferential CO oxidation[J]. Int J Hydrogen Energ,2015,40(39):13443.
[8] Morfin F, Ait-Chaou A, Lomello M, et al.Influence of the partner oxide on the catalytic properties of Au/CexZr1-x highly loaded gold catalysts[J]. J Catal,2015,331:210.
[9] Grzybowska-Swierkosz B, Ruszel M, Grabowski R, et al.Au/ MCr2O4 (M = Co, Mn, Fe) catalysts in the oxidations of CO, C2, and C3 hydrocarbons[J]. Reaction Kinetics, Mechanisms Catalysis,2012,105(1):69.
[10] Zhen M, Overbury S H, Sheng D.Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives[J]. J Mol Catal A-Chem,2007,273(1-2):186.
[11] Mizera J, Spiridis N, Socha R P, et al.The influence of base metal (M) oxidation state in Au-M-O/TiO2 systems on their catalytic activity in carbon monoxide oxidation[J]. Catalysts,2012,2(1):38.
[12] Debeila M A, Wells R P K, Anderson J A. Influence of water and pretreatment conditions on CO oxidation over Au/TiO2-In2O3 catalysts[J]. J Catal,2006,239(1):162.
[13] Gluhoi A C, Nieuwenhuys B E.Structural and chemical promoter effects of alkali (earth) and cerium oxides in CO oxidation on supported gold[J]. Catal Today,2007,122(3-4):226.
[14] Moreau F, Bond G C, van der Linden B, et al. Gold supported on mixed oxides for the oxidation of carbon monoxide[J]. Appl Catal A-Gen,2008,347(2):208.
[15] Chi Y S, Lin H P, Mou C Y.CO oxidation over gold nanocatalyst confined in mesoporous silica[J]. Appl Catal A-Gen,2005,284(1-2):199.
[16] Qian K, Huang W, et al.Anchoring highly active gold nanoparticles on SiO2 by CoOx additive[J]. J Catal,2007,248(1):137.
[17] Qian K, Huang W, Fang J, et al.Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts: Some mechanism insights[J]. J Catal,2008,255(2):269.
[18] Grisel R J H, Neiuwenhuys B E. A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts[J]. Catal Today,2001,64(1-2):69.
[19] Gluhoi A C, Dekkers M A P, Nieuwenhuys B E. Comparative stu-dies of the N2O/H2 , N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: Effect of the addition of various oxides[J]. J Catal,2003,219(1):197.
[20] Kim K J, Chang C H, Ahn H G.The effect of zinc oxide addition to alumina-supported gold catalyst in low temperature carbon monoxide oxidation[J]. J Nanosci Nanotechnol,2015,15:660.
[21] Zhu H G, Liang C D, Yan W F, et al.Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique[J]. J Phys Chem B,2006,110(22):10842.
[22] Qu Z P, Ke G Z, Wang Y, et al.Investigation of factors influencing the catalytic performance of CO oxidation over Au-Ag/SBA-15 catalyst[J]. Appl Surf Sci,2013,277:293.
[23] Liu X Y, Wang A Q, Zhang T, et al.Au-Cu alloy nanoparticles supported on silica gel as catalyst for CO oxidation: Effects of Au/Cu ratios[J]. Catal Today,2011,160(1):103.
[24] Carabineiro S A C, Santos V P, Pereira M F R, et al. CO oxidation over gold supported on Cs, Li and Ti-doped cryptomelane materials[J]. J Colloid Interface Sci,2016,480:17.
[25] Qi L, Tang C J, Zhang L, et al.Influence of cerium modification methods on catalytic performance of Au/mordenite catalysts in CO oxidation[J]. Appl Catal B-Environ,2012,127:234.
[26] Zamaro J M, Boix A V, Martinez-Hernandez A.CO oxidation over Au supported on Mn-ZSM5 and Mn-MOR[J]. Catal Commun,2015,69:212.
[27] Hammer N, Mathisen K, Ronning M.CO oxidation over Au/TiO2-carbon catalysts: The effect of thermal treatment, stability and TiO2 support structure[J]. Top Catal,2013,56(9-10):637.
[28] Zhong Z, Teo J, Lin M, et al.Synthesis of porous α-Fe2O3 nanorods as catalyst support and a novel method to deposit small gold colloids on them[J]. Top Catal,2008,49(3):216.
[29] Wang J, Shang K, Guo Y, et al.Easy hydrothermal synthesis of external mesoporous γ-Al2O3 nanorods as excellent supports for Au nanoparticles in CO oxidation[J]. Microp Mesop Mater,2013,181(2):141.
[30] Liu H, Lin Y, Ma Z.Au/LaPO4 nanowires: Synthesis, characte-rization, and catalytic CO oxidation[J]. J Taiwan Inst Chem E,2016,62:275.
[31] Liu J, Qiao B, Song Y, et al.Highly active and sintering-resistant heteroepitaxy of Au nanoparticles on ZnO nanowires for CO oxidation[J]. J Energy Chem,2016,25(3):361.
[32] Sandoval A, Zanella R, Klimova T E.Titania nanotubes decorated with anatase nanocrystals as support for active and stable gold catalysts for CO oxidation[J]. Catal Today,2016,282(2):140.
[33] Yang K, Zhang Y, Meng C, et al.Well-crystallized ZnCo2O4 nanosheets as a new-style support of Au catalyst for high efficient CO preferential oxidation in H2 stream under visible light irradiation[J]. Appl Surf Sci,2016,391:635.
[34] Zhou N N, He B B, Wang X H, et al.Preparation and characterization of Au@TiO2 core-shell hollow nanoparticles with CO oxidation performance[J]. J Nanopart Res,2014,16(11):2676.
[35] Wang J, Hu Z H, Miao Y X, et al.Hollow gamma-Al2O3 microspheres as highly “active” supports for Au nanoparticle catalysts in CO oxidation[J]. Gold Bull,2014,47(1-2):95.
[36] Zhang J, Liu X H, Wang S R, et al.Synthesis and catalytic activity of Au-supported porous TiO2 nanospheres for CO oxidation[J]. Powder Technol,2012,217:585.
[37] Yin H F, Ma Z, Chi M F, et al.Heterostructured catalysts prepared by dispersing Au@Fe2O3 core-shell structures on supports and their performance in CO oxidation[J]. Catal Today,2011,160(1):87.
[38] Zhang X L, Li G J, Yang S, et al.Nanoporous CuO ribbons modified by Au nanoparticles through chemical dealloying and calcination for CO oxidation[J]. Microp Mesop Mater,2016,226:61.
[39] Ren L H, Zhang H L, Lu A H, et al.Porous silica as supports for controlled fabrication of Au/CeO2/SiO2 catalysts for CO oxidation: Influence of the silica nanostructures[J]. Microp Mesop Mater,2012,158(8):7.
[40] Soler L, Casanovas A, Urrich A, et al.CO oxidation and COPrOx over preformed Au nanoparticles supported over nanoshaped CeO2[J]. Appl Catal B-Environ,2016,197:47.
[41] Li S, Zhu H, Qin Z, et al.Morphologic effects of nano CeO2-TiO2 on the performance of Au/CeO2-TiO2 catalysts in low-temperature CO oxidation[J]. Appl Catal B-Environ,2014,144(2):498.
[42] Liu Y, Liu B, Wang Q, et al.Three-dimensionally ordered macroporous Au/CeO2-Co3O4 catalysts with mesoporous walls for enhanced CO preferential oxidation in H2-rich gases[J]. J Catal,2012,296(12):65.
[43] Liu Y, Liu B, Liu Y, et al. Improvement of catalytic performance of preferential oxidation of CO in H2-rich gases on three-dimensionally ordered macro- and meso-porous Pt-Au/CeO2 catalysts[J]. Appl Catal B-Environ,2013,142-143(1):615.
[44] Choudhary T V, Goodman D W.Catalytically active gold: The role of cluster morphology[J]. Appl Catal A-Gen,2005,291(1):566.
[45] And H Y L, Chen Y W. Low-Temperature CO Oxidation on Au/FexOy Catalysts[J]. Industrial Eng Chem Res,2005,44(13):4569.
[46] Kang Y M, Wan B Z.Gold and iron supported on Y-type zeolite for carbon monoxide oxidation[J]. Catal Today,1997,35(4):379.
[47] Kozlov A I, Kozlova A P, Liu H, et al.A new approach to active supported Au catalysts[J]. Appl Catal A-Gen,1999,182(1):9.
[48] Okumura M, Nakamura S, Tsubota S, et al.Chemical vapor deposition of gold on Al2O3 , SiO2 , and TiO2 for the oxidation of CO and of H2[J]. Catal Lett,1998,51(1):53.
[49] Grunwaldt J D, Kiener C, Wögerbauer C, et al.Preparation of supported gold catalysts for low-temperature CO oxidation via “size-controlled” gold colloids[J]. J Catal,1999,181(2):223.
[50] Ma Z, Yin H F, Dai S.Influence of preparation methods on the performance of metal phosphate-supported gold catalysts in CO oxidation[J]. Catal Lett,2010,138(1-2):40.
[51] Sandoval A, Louis C, Zanella R.Improved activity and stability in CO oxidation of bimetallic Au-Cu/TiO2 catalysts prepared by deposition-precipitation with urea[J]. Appl Catal B-Environ,2013,140:363.
[52] Wang S P, Zhang T Y, Wang X Y, et al.Synthesis, characterization and catalytic activity of Au/Ce0.8Zr0.2O2 catalysts for CO oxidation[J]. J Mol Catal A-Chem,2007,272(1):45.
[53] Hodge N A, Kiely C J, Whyman R, et al.Microstructural comparison of calcined and uncalcined gold/iron-oxide catalysts for low-temperature CO oxidation[J]. Catal Today,2002,72(1-2):133.
[54] Meng M, Tu Y B, Ding T, et al.Effect of synthesis pH and Au loading on the CO preferential oxidation performance of Au/MnOx-CeO2 catalysts prepared with ultrasonic assistance[J]. Int J Hydrogen Energ,2011,36(15):9139.
[55] Zhu B L, Guo Q, Huang X L, et al.Characterization and catalytic performance of TiO2 nanotubes-supported gold and copper particles[J]. J Mol Catal A-Chem,2006,249(1-2):211.
[56] Kim S H, Jung C H, Sahu N, et al.Catalytic activity of Au/TiO2 and Pt/TiO2 nanocatalysts prepared with arc plasma deposition under CO oxidation[J]. Appl Catal A-Gen,2013,454:53.
[57] Dulnee S, Luengnaruemitchai A, Wanchanthuek R.Activity of Au/ZnO catalysts prepared by photo-deposition for the preferential CO oxidation in a H2-rich gas[J]. Int J Hydrogen Energ,2014,39(12):6443.
[58] Tsai H Y, Lin Y D, Fu W T, et al.The activation of supported Au catalysts prepared by impregnation[J]. Gold Bull,2007,40(3):184.
[59] Del Rio E, Lopez-Haro M, Cies J M, et al.Dramatic effect of redox pre-treatments on the CO oxidation activity of Au/Ce0.50Tb0.12Zr0.38- O2-x catalysts prepared by deposition-precipitation with urea: A nano-analytical and nano-structural study[J]. Chem Commun,2013,49(60):6722.
[60] Sekhar A C S, Sivaranjani K, Gopinath C S, et al. A simple one pot synthesis of nano gold-mesoporous silica and its oxidation catalysis[J]. Catal Today,2012,198(1):92.
[61] Ramirez-Garza R E, Pawelec B, Zepeda T A, et al. Total CO oxidation over Fe-containing Au/HMS catalysts: Effects of gold loading and catalyst pretreatment[J]. Catal Today,2011,172(1):95.
[62] Tai Y, Yamaguchi W, et al.Depletion of CO oxidation activity of supported Au catalysts prepared from thiol-capped Au nanoparticles by sulfates formed at Au-titania boundaries: Effects of heat treatment conditions on catalytic activity[J]. J Catal,2010,270(2):234.
[63] Li Q L, Zhang Y H, Chen G X, et al.Ultra-low-gold loading Au/CeO2 catalysts for ambient temperature CO oxidation: Effect of preparation conditions on surface composition and activity[J]. J Catal,2010,273(2):167.
[64] Zhu H G, Ma Z, Clark J C, et al.Low-temperature CO oxidation on Au/fumed SiO2-based catalysts prepared from Au(en)2Cl3 precursor[J]. Appl Catal A-Gen,2007,326(1):89.
[65] Konova P, Naydenov A, Venkov C, et al.Activity and deactivation of Au/TiO2 catalyst in CO oxidation[J]. J Mol Catal A-Chem,2004,213(2):235.
[66] Zou X H, Qi S X, Suo Z H, et al.Activity and deactivation of Au/Al2O3 catalyst for low-temperature CO oxidation[J]. Catal Commun,2007,8(5):784.
[1] 鲁丽佳, 计丕霞, 陈全, 易鹏, 吴敏. 生物炭提升土壤中解磷菌定殖及其解磷能力[J]. 材料导报, 2024, 38(21): 23050070-9.
[2] 张静, 高陈陈, 吴明明, 陈诚. 微/纳米级有机空心粒子构造及功能应用研究进展[J]. 材料导报, 2024, 38(21): 23040199-11.
[3] 刘晨爽, 田野, 盛显良, 斯琴塔娜, 张玉辉. 天然高分子多糖在药物传递领域中的应用[J]. 材料导报, 2024, 38(19): 23050200-18.
[4] 侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
[5] 张玉金, 杨琦, 张瑞, 高宇新, 拜永孝. 硅胶载体的制备及在聚烯烃催化剂领域中的应用[J]. 材料导报, 2024, 38(1): 22040363-11.
[6] 韩欣彤, 曹阳, 文峰, 高助威, 李成欣, 于晓龙. 氧化石墨烯与氮掺杂氧化石墨烯量子点负载去氧地胆草内酯抑制肿瘤细胞的研究[J]. 材料导报, 2023, 37(14): 22030289-7.
[7] 廖家蔚, 刘红宇, 谢凯欣, 沈慧玲, 刘佳乐, 郑兴农. 四氧化三铁磁性药物载体的研究进展[J]. 材料导报, 2022, 36(Z1): 22040052-7.
[8] 杨惠舒, 李乐, 刘馨谣, 汤凯璇, 乔利. 介孔二氧化硅纳米颗粒作为药物载体的研究现状[J]. 材料导报, 2022, 36(Z1): 21110245-6.
[9] 张瑜, 张泗达, 丁秀仿, 张瑞华, 陈东, 徐建富, 附青山. pH敏感型水凝胶在药物递送中的研究进展[J]. 材料导报, 2022, 36(Z1): 21120138-5.
[10] 郭建新, 周芸, 汪天尧, 闫敬明, 郭路, 左孝青. Al2O3/FeCrNi复合蜂窝载体材料的制备及性能[J]. 材料导报, 2022, 36(9): 20120112-6.
[11] 张达, 张传琪, 李少龙, 何燕. 等离子体技术应用于碳载体改性及铂基催化剂制备的研究进展[J]. 材料导报, 2022, 36(24): 21030319-9.
[12] 李想, 张军. 氨硼烷水解制氢催化剂及其限域载体的形貌可控合成研究进展[J]. 材料导报, 2022, 36(22): 20100246-9.
[13] 刘鑫, 黄亮, 竺清, 李孝建, 郭俊艳, 张海军. 钯催化乙炔半加氢反应的研究进展[J]. 材料导报, 2022, 36(20): 20090171-9.
[14] 刘欢, 秦凌浩. 血小板囊泡作为药物递送载体的研究综述[J]. 材料导报, 2022, 36(19): 21010078-8.
[15] 贾斐, 杜传超, 毛天立, 刘宇, 刘晓光. 纳米载体共递送基因和化疗药物用于肿瘤治疗的研究进展[J]. 材料导报, 2022, 36(17): 20080171-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed