Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 25030044-8    https://doi.org/10.11896/cldb.25030044
  无机非金属及其复合材料 |
复合外加剂对3D打印砂浆流变与建造性的协同机制及孔结构研究
马亚鹏1, 翟文辉1, 张东生2, 朱涛1, 杨秋宁1, 毛明杰1,*
1 宁夏大学土木与水利工程学院,宁夏 银川 750021
2 鲁汶大学土木工程系,比利时 布鲁日 8200
Study on the Synergistic Mechanism and Pore Structure of Composite Admixtures on Rheology and Constructability of 3D Printed Mortar
MA Yapeng1, ZHAI Wenhui1, ZHANG Dongsheng2, ZHU Tao1, YANG Qiuning1, MAO Mingjie1,*
1 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
2 Department of Civil Engineering, KU Leuven, Bruges 8200, Belgium
下载:  全 文 ( PDF ) ( 19619KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了使3D打印粉煤灰-矿渣-水泥基拌合物(3DFGPC)能够被连续、均匀挤出,且在挤出后逐层堆叠过程中保持形状、结构稳定,以硫铝酸盐水泥(CSA)为早强剂,同时分别复掺有机膨润土(OB)和凹凸棒土(AT)两种触变剂进行试验。本工作先研究单掺CSA,选取工作性能、力学性能最适合3D打印挤出与成型的掺量,分别复掺OB和AT后分析其对3DFGPC工作性能、流变性能及力学性能的影响,同时利用气泡间距仪研究3DFGPC孔结构的变化规律。结果表明:单掺CSA时,最佳掺量为4%(质量分数),此时适宜打印但存在结构稳定性不足的现象。在复掺触变剂后,性能改善明显,其中4%的CSA分别与1.0%OB和0.8%AT复掺时3DFGPC的触变性为1 762.2 Pa·s-1、2 328.5 Pa·s-1,较C4组分别提升了7.74%和42.4%,结合流变实验、各向异性得出AT对3DFGPC的影响更为显著。此外,由孔结构分析发现掺量为0.8%的AT加入3DFGPC后,其内部气泡数量、气泡间距系数均减小,使3DFGPC的致密程度显著提升。因此,掺量为4%的CSA与掺量为0.8%的AT复合使用对3DFGPC的改善效果最好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马亚鹏
翟文辉
张东生
朱涛
杨秋宁
毛明杰
关键词:  3D打印  硫铝酸盐水泥  触变剂  流变特性  气孔结构    
Abstract: To achieve continuous and uniform extrusion of 3D-printed FA-GGBS-cement composites (3DFGPC) while ensuring shape retention and structural stability during layer-by-layer deposition, calcium sulfoaluminate cement (CSA) was employed as an early-strength agent, and two thixotropic additives, organically modified bentonite (OB) and attapulgite (AT) were investigated. In this study, CSA cement was first investigated as a single admixture to identify the optimal dosage that provides the most suitable workability and mechanical properties for 3D printing extrusion and shape retention. Subsequently, the selected CSA formulation was respectively combined with OB and AT to systematically analyze their effects on the workability, rheological properties, and mechanical performance of 3DFGPC. The evolution of the materia's pore structure was concurrently analyzed using bubble spacing measurements. Key findings demonstrate that a 4% CSA content (by mass) provided suitable printability but insufficient structural build-up. The incorporation of thixotropic additives substantially enhanced performance, with thixotropic values reaching 1 762.2 Pa·s-1 (4% CSA+1.0% OB) and 2 328.5 Pa·s-1 (4% CSA+0.8% AT), representing improvements of 7.74% and 42.4% respectively compared to the 4% CSA reference group (C4). Rheological analysis and anisotropy evaluation revealed AT's more pronounced effect on 3DFGPC properties. Pore structure characterization further showed that 0.8% AT addition significantly reduced both bubble quantity and spacing coefficient, markedly improving material density. The synergistic combination of 4% CSA and 0.8% AT yielded optimal enhancement of 3DFGPC's extrudability, structural stability, and microstructural densification, establishing this formulation as particularly suitable for 3D printing applications.
Key words:  3D printing    sulphoaluminate cement    thixotropic agent    rheological property    stomatal structure
发布日期:  2025-08-28
ZTFLH:  TU528  
  TB44  
基金资助: 国家自然科学基金(52468068);宁夏自然科学基金重点项目(2024AAC02014)
通讯作者:  *毛明杰,宁夏大学土木与水利工程学院教授、博士研究生导师。目前主要从事土木工程结构、新型建筑材料等方面的研究工作。maomj@nxu.edu.cn   
作者简介:  马亚鹏,宁夏大学硕士研究生,主要研究领域为土木工程材料及固废资源再利用。
引用本文:    
马亚鹏, 翟文辉, 张东生, 朱涛, 杨秋宁, 毛明杰. 复合外加剂对3D打印砂浆流变与建造性的协同机制及孔结构研究[J]. 材料导报, 2025, 39(17): 25030044-8.
MA Yapeng, ZHAI Wenhui, ZHANG Dongsheng, ZHU Tao, YANG Qiuning, MAO Mingjie. Study on the Synergistic Mechanism and Pore Structure of Composite Admixtures on Rheology and Constructability of 3D Printed Mortar. Materials Reports, 2025, 39(17): 25030044-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25030044  或          https://www.mater-rep.com/CN/Y2025/V39/I17/25030044
1 Yang Q R, Liu Q L, Wang Z P, et al. Building Technology, 2015, 46(12), 1076(in Chinese).
杨钱荣, 刘巧玲, 王中平, 等. 建筑技术, 2015, 46(12), 1076.
2 Hao J J. Mix design and performance study of 3D printed recycled fine aggregate concrete. Master's Thesis, Nanchang University, China, 2020(in Chinese).
郝建军. 3D打印再生细骨料混凝土配合比设计及其性能研究. 硕士学位论文, 南昌大学, 2020.
3 Wang K Q, Ling C W, Li D, et al. Journal of Building Materials, 2024, 27(6), 543(in Chinese).
王开强, 零朝维, 李迪, 等. 建筑材料学报, 2024, 27(6), 543.
4 Han N, Xiao J Z, Lyu Z Y, et al. Journal of Tongji University (Natural Science Edition), 2024, 52 (12), 1834(in Chinese).
韩女, 肖建庄, 吕振源, 等. 同济大学学报(自然科学版), 2024, 52(12), 1834.
5 Yao Y M, Zhang J W, Sun Y F, et al. Journal of Building Structures, 2024, 45(9), 29(in Chinese).
姚一鸣, 张珈玮, 孙元锋, 等. 建筑结构学报, 2024, 45(9), 29.
6 Yue J G, Wang J, Wu Y, et al. Journal of Building Structures, 2024, 45(5), 243(in Chinese).
岳健广, 王健, 吴瑶, 等. 建筑结构学报, 2024, 45(5), 243.
7 Chen Y F, Dong W W, Zou D Q, et al. Concrete, 2023(12), 178(in Chinese).
陈亚飞, 董伟伟, 邹道勤, 等. 混凝土, 2023(12), 178.
8 Yang Q R, Zhao Z Z, Xiao J Z, et al. Journal of Building Materials, 2021, 24(2), 412(in Chinese).
杨钱荣, 赵宗志, 肖建庄, 等. 建筑材料学报, 2021, 24(2), 412.
9 Schutter D G, Lesage K, Mechtcherine V, et al. Cement and Concrete Research, 2018, 112, 25.
10 Luo S, Zhang G, Wang X, et al. Construction and Building Materials, 2025, 462, 139923.
11 Jacques K, Anton P D, Gideon Z V. Additive Manufacturing, 2021, 37, 101740.
12 Geng Z, She W, Zuo W, et al. Cement and Concrete Research, 2020, 138, 106220.
13 Gao N X, Ran Q P, Qiao M. Journal of Building Materials, 2017, 20(2), 234(in Chinese).
高南箫, 冉千平, 乔敏. 建筑材料学报, 2017, 20(2), 234.
14 Lee E C, Chandra S, Leong Y. Powder Technology, 2012, 223, 105.
15 Kawashima S, Chaouche M, Corr J D, et al. Cement and Concrete Research, 2013, 53, 112.
16 Zhang J, Li G, Ye W, et al. Construction and Building Materials, 2018, 186, 1144.
17 Wu M, Zhang Y, Jia Y, et al. Cement and Concrete Composites, 2019, 103, 353.
18 Trauchessec R, Mechling J, Lecomte A, et al. Cement and Concrete Composites, 2015, 56, 106.
19 Quanji Z J, Lomboy G R, Wang K J. Construction and Building Materials, 2014, 69, 295.
20 Qian Y, Kawashima S. Cement and Concrete Research, 2016, 90, 73.
21 Teng L, Zhu J, Khayat H K, et al. Cement and Concrete Research, 2020, 138, 106238.
22 Salazar R R, Muñoz A M, Vargas A, et al. Construction and Building Materials, 2024, 445, 137857.
23 Chen M, Li L, Zheng Y, et al. Construction and Building Materials, 2018, 189, 601.
24 Tramontin M S, Maia I F, Elisângela M D G, et al. Journal of Building Engineering, 2020, 32, 101833.
25 Gao H, Jin L, Chen Y, et al. Journal of Building Engineering, 2024, 91, 109626.
26 Xu J B, Chen M X, Zhao Z H, et al. Journal of Building Engineering, 2021, 38, 102208.
27 Panda B, Ruan S, Unluer C, et al. Composites Part B, 2019, 165, 75.
28 Gokhan K, Oguzhan B Y, Baris B, et al. Construction and Building Materials, 2023, 373, 130850
29 Liu C, Meng Y S, Wu Y W, et al. Materials Reports, 2024, 38(9), 122(in Chinese).
刘超, 蒙毅升, 武怡文, 等. 材料导报, 2024, 38(9), 122.
30 Hu Y, Diao L, Lai Z Y, et al. Construction and Building Materials, 2019, 224, 276.
31 Favretto F, Bruschi J G, Secco P M, et al. Indian Geotechnical Journal, 2025,1, 283.
32 Yan J, Liu X L, Wang X T, et al. Cement and Concrete Composites, 2022, 134, 104788.
[1] 李晨晓, 李俊生, 陈雨洁, 颜曼玲, 陈玉蓉, 万帆. 陶瓷材料熔融沉积3D打印研究进展[J]. 材料导报, 2025, 39(8): 24040242-10.
[2] 周书澎, 刘泽平, 区庆佑, 王传林. 混杂纤维对硫铝酸盐水泥基ECC材料性能的影响[J]. 材料导报, 2025, 39(5): 23120113-7.
[3] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[4] 张大旺, 杨欢, 李辉. 3D打印建筑底层荷载的研究进展[J]. 材料导报, 2025, 39(16): 24060021-12.
[5] 张大旺, 许晓光, 李辉. 3D打印混凝土的长期性能研究进展[J]. 材料导报, 2025, 39(13): 24030165-13.
[6] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[7] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[8] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[9] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[10] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[11] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[12] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[13] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[14] 唐振中, 贾鲁涛, 林永权, 吴捷, 张亚梅. 钨尾矿粉对水泥基3D打印混凝土流变、水化及力学性能的影响[J]. 材料导报, 2024, 38(21): 23060169-6.
[15] 蒋修明, 丁湛, 孙超, 岳磊, 栗慧峰, 栗培龙. 生物基树脂改性沥青流变特性评价及体系融合行为[J]. 材料导报, 2024, 38(2): 22040409-7.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed