Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22040409-7    https://doi.org/10.11896/cldb.22040409
  高分子与聚合物基复合材料 |
生物基树脂改性沥青流变特性评价及体系融合行为
蒋修明1, 丁湛2,3, 孙超1, 岳磊1, 栗慧峰1, 栗培龙1,4,*
1 长安大学公路学院,西安 710064
2 长安大学水利与环境学院,西安 710054
3 长安大学旱区地下水文与生态效应教育部重点实验室,西安 710054
4 长安大学道路结构与材料交通运输行业重点实验室,西安 710064
Rheological Properties Evaluation and System Fusion Behavior of Bio-based Resin Modified Asphalt Binders
JIANG Xiuming1, DING Zhan2,3, SUN Chao1, YUE Lei1, LI Huifeng1, LI Peilong1,4,*
1 School of Highway, Chang’an University, Xi’an 710064, China
2 School of Water and Environment, Chang’an University, Xi’an 710054, China
3 Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang’an University, Xi’an 710054, China
4 Key Laboratory of Road Structure and Material Ministry of Transport, Chang’an University, Xi’an 710064, China
下载:  全 文 ( PDF ) ( 10511KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 受石油资源储量和供应的限制,将生物质材料引入石油沥青已经成为一个热门话题。本研究以麦草秸秆液化产物为原材料合成三种生物基树脂(BPF、BPU和BPF-PU),并将其用于生物沥青的制备,旨在探究生物基树脂对沥青流变特性的影响及二者之间的交互作用。首先,通过频率扫描和多重应力蠕变恢复试验分析了树脂对沥青胶结料黏弹特性和高温抗车辙性能的影响;其次,借助流变学理论对树脂-沥青体系的相态结构进行了分析;最后,从荧光显微结构和官能团分布特征的角度探究了二者之间的融合行为。结果表明,BPF和BPF-PU能够增加沥青中的弹性成分,提升其高温抗车辙性能,而BPU则会强化沥青的黏性响应;三种树脂能够较为均匀地分散到基质沥青中,并与其形成稳定的相态结构,这可能是因为树脂与基质沥青之间形成了醚键(C-O-C)。本研究有助于为农作物秸秆的增值转化和生物沥青的开发提供新的思路,但在生物沥青性能的全面评价方面需要进一步研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋修明
丁湛
孙超
岳磊
栗慧峰
栗培龙
关键词:  农作物秸秆  生物基树脂  生物沥青  流变特性  融合行为  相态结构    
Abstract: Limited by the reserves and supply of petroleum resources, introducing biomass materials into petroleum asphalt binders has become a hot topic. In this study, three kinds of bio-based resins (i.e., BPF, BPU and BPF-PU) were synthesized from wheat straw liquefaction pro-ducts and used for the preparation of bio-asphalt binders. This work aims to investigate the effect of bio-based resins on the rheological properties of the neat asphalt binder and their interactions. Firstly, the effects of bio-based resins on viscoelastic properties and high-temperature rutting resistance of the asphalt binder were evaluated by the frequency scanning test and the multiple stress creep recovery test. Subsequently, the phase structure of resin-asphalt system was analyzed based on the rheological theory. Finally, the fusion behavior of resins and asphalt binders was explored by fluorescence microstructure and functional group distribution. The results indicate that the percentage elastic components in the neat asphalt binder can be increased by BPF and BPF-PU, leading to superior anti-rutting performance. However, BPU tends to enhance the viscous response of the neat asphalt binder. The resins can be dispersed into the neat asphalt binder and form a uniform and stable phase structure, which may be attributed to the formation of ether bonds (C-O-C) between the resin and the neat asphalt binder. This investigation contributes to provide new ideas for the value-added conversion of the crop straw and the development of bio-asphalt binders, while further research is needed in the comprehensive evaluation of the bio-asphalt binder performance.
Key words:  crop straw    bio-based resin    bio-asphalt binder    rheological property    fusion behavior    phase structure
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  U414  
基金资助: 国家自然科学基金(52378432;52308430);陕西省重点研发计划(2022SF-169);中央高校基本科研业务费高新技术项目(300102212206)
通讯作者:  *栗培龙,长安大学公路学院教授、博士研究生导师,University of California at Davis(UC Davis)访问学者,注册公路检测工程师(公路、材料)。现任公路学院机场工程系主任、道路结构与材料交通运输行业重点实验室副主任。主要从事路基路面/机场道面材料结构与性能研究,具体研究方向包括:新型高性能、环保型路面材料的研究与开发,沥青混合料微细观力学作用行为及机理,道路材料服役行为及动力学特性,新型道路养护材料与技术等,发表学术论文120余篇(其中SCI/EI检索60余篇),授权专利30余项。lipeilong@chd.edu.cn   
作者简介:  蒋修明,长安大学公路学院讲师,主要从事废弃资源高值化利用理论及技术、绿色可持续路面材料研发及应用和道路材料流变学行为及力学响应等方面的研究。
引用本文:    
蒋修明, 丁湛, 孙超, 岳磊, 栗慧峰, 栗培龙. 生物基树脂改性沥青流变特性评价及体系融合行为[J]. 材料导报, 2024, 38(2): 22040409-7.
JIANG Xiuming, DING Zhan, SUN Chao, YUE Lei, LI Huifeng, LI Peilong. Rheological Properties Evaluation and System Fusion Behavior of Bio-based Resin Modified Asphalt Binders. Materials Reports, 2024, 38(2): 22040409-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040409  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22040409
1 Choi J. Journal of Cleaner Production, 2019, 209, 88.
2 Qu X, Ding H Y, Wang C, et al. Materials Reports, 2022, 36(19), 1(in Chinese).
屈鑫, 丁鹤洋, 王超, 等. 材料导报, 2022, 36(19), 1.
3 Uchoa A F J, da Silva R W, Feitosa J P M, et al. Construction and Building Materials, 2021, 285, 122883.
4 Li T, He S, Lin X Y, et al. Materials Reports, 2021, 35(19), 19001 (in Chinese).
李涛, 何松, 林晓莹, 等. 材料导报, 2021, 35(19), 19001.
5 Cao X J, Liu P, Tang B M. Materials Reports, 2015, 29(17), 95(in Chinese).
曹雪娟, 刘攀, 唐伯明. 材料导报, 2015, 29(17), 95.
6 Al-Sabaeei A M, Napiah M B, Sutanto M H, et al. Journal of Cleaner Production, 2020, 249, 119357.
7 Zahoor M, Nizamuddin S, Madapusi S, et al. Process Safety and Environmental Protection, 2021, 147, 1135.
8 Yan K, Zhang M, You L, et al. Construction and Building Materials, 2020, 240, 117951.
9 Gao J F, Wang H N, You Z P, et al. Journal of South China University of Technology (Natural Science Edition), 2017, 45(11), 24 (in Chinese).
高俊锋, 汪海年, 尤占平, 等. 华南理工大学学报(自然科学版), 2017, 45(11), 24.
10 Girimath S, Singh D. Construction and Building Materials, 2019, 227, 116684.
11 Wang C, Xie T, Cao W. Materials and Structures, 2019, 52(5), 1.
12 Zhang R, Ji J, You Z, et al. Journal of Materials in Civil Engineering, 2020, 32(12), 04020375.
13 Lv S, Liu J, Peng X, et al. Journal of Cleaner Production, 2021, 320, 128770.
14 Li R, Bahadori A, Xin J, et al. Construction and Building Materials, 2020, 251, 118926.
15 Liu J, Lv S, Peng X, et al. Construction and Building Materials, 2021, 305, 124784.
16 Li Y M. Research on weather resistance of resin rubber modified asphalt binder and its mixture. Ph. D. Thesis, Northeast Forestry University, China, 2021 (in Chinese).
李艺铭. 树脂橡胶改性沥青及其混合料耐候性的研究. 博士学位论文, 东北林业大学, 2021.
17 Zhu B C. Waste useless particleboard liquefaction in phenol and the resinification material preparation of its products. Ph. D. Thesis, Beijing Forestry University, China, 2008 (in Chinese).
朱本城. 废弃刨花板的苯酚液化及其生成物的树脂化材料制备. 博士学位论文, 北京林业大学, 2008.
18 Zheng W, Wang H, You Z, et al. Construction and Building Materials, 2021, 309, 125113.
19 Domínguez J C, Oliet M, Alonso M V, et al. Industrial Crops and Pro-ducts, 2013, 42, 308.
20 Kim J S. Bioresource Technology, 2015, 178, 90.
21 Jiang X, Li P, Ding Z, et al. Construction and Building Materials, 2021, 305, 124769.
22 Wang J, Yuan J, Kim K W, et al. Fuel, 2018, 227, 289.
23 Wang Y, Zhao K, Li F, et al. Construction and Building Materials, 2021, 271, 121862.
24 Jiang X, Li P, Ding Z, et al. Construction and Building Materials, 2022, 350, 128845.
25 Zhang H, Chen Z, Xu G, et al. Fuel, 2018, 221, 78.
26 Li Y, Hao P, Zhao C, et al. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(3), 339.
27 Dong F, Yu X, Liu S, et al. Construction and Building Materials, 2016, 115, 285.
28 Xie H, Li C, Wang Q. Construction and Building Materials, 2022, 326, 126792.
[1] 黄煌煌, 滕乐, 高小建, 刘正楠. 流变与浇筑方式对UHPC纤维分散和取向的影响[J]. 材料导报, 2024, 38(24): 23100032-6.
[2] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[3] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[4] 黄振华, 李翠平, 李雪, 阮竹恩, 王少勇. 不同物料配比充填料浆流变性的体积浓度效应[J]. 材料导报, 2023, 37(22): 22050235-9.
[5] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[6] 张雨, 铁生年, 汪长安. 改性纳米碳粉芒硝基纳米流体强化传热[J]. 材料导报, 2022, 36(18): 20100294-7.
[7] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[8] 汤琦, 颜桐桐, 孙豪, 王小蕾, 王春芙, 宗成中. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6): 6206-6211.
[9] 吴凡, 杨发光, 肖柏林, 杨志强, 高谦. 钢渣掺量对膏体早期强度及流变特性的影响[J]. 材料导报, 2021, 35(3): 3021-3025.
[10] 杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
[11] 诸利一, 吕文生, 杨鹏, 王志凯, 王志军. 超声波对全尾砂砂浆流变特性的影响[J]. 材料导报, 2020, 34(6): 6088-6094.
[12] 李超, 崔世超, 王岚, 白雪峰. 多聚磷酸/SBS复合改性沥青的高温流变特性[J]. 材料导报, 2020, 34(14): 14057-14062.
[13] 温彦凯, 郭乃胜, 王淋, 顾威, 尤占平. 泡沫温拌沥青胶浆的流变特性及微观机制分析[J]. 材料导报, 2020, 34(10): 10052-10060.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed