Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24070067-5    https://doi.org/10.11896/cldb.24070067
  无机非金属及其复合材料 |
空间超低温真空绝热板的热-力学性能研究
靳楠1, 赵婉彤1, 孟博1, 艾素芬1,*, 刘佳1, 陈照峰2, 杨丽霞2
1 北京卫星制造厂有限公司,北京 100094
2 南京航空航天大学材料科学与技术学院,南京 210016
Study on the Thermal-Mechanical Properties of Space Ultra Low Temperature Vacuum Insulation Panel
JIN Nan1, ZHAO Wantong1, MENG Bo1, AI Sufen1,*, LIU Jia1, CHEN Zhaofeng2, YANG Lixia2
1 Beijing Spacecrafts, Beijing 100094, China
2 College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
下载:  全 文 ( PDF ) ( 7411KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 真空绝热板(Vacuum insulation panel,VIP)是空间站低温存储装置的核心材料,是-80 ℃条件下长时间工作的必备保障。针对空间存储装置绝热应用需求,研制出导热系数低于5 mW/(m·K)的空间级VIP,并测试了该VIP在室温、低温以及高低温交变和低温长期存放多场景环境下的压缩性能和拉伸性能,揭示了其导热系数和线膨胀系数的变化规律。结果表明,该VIP在-80 ℃时的力学性能显著提升,压缩强度和压缩模量分别约是室温的104.60%和107.04%,拉伸强度和拉伸模量达到室温的2.12倍和3.04倍。经过高低温循环和长期低温存储后,VIP的压缩强度和压缩模量总体呈上升趋势,证明了其具有良好的环境适应性和长期稳定性。该空间级VIP成功满足了空间站对VIP的低热导、高强度、低变形以及耐久性要求,已实际应用于轨道环境。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
靳楠
赵婉彤
孟博
艾素芬
刘佳
陈照峰
杨丽霞
关键词:  真空绝热板  空间  低温  热学  力学性能    
Abstract: Vacuum insulation panels (VIPs) serve as the core material for low-temperature storage units in space stations, providing essential insulation for prolonged operations at -80 ℃. In response to the specific insulation needs of space storage applications, a space-grade VIP with a thermal conductivity below 5 mW/(m·K) was developed. This VIP was tested under various conditions including ambient temperature, low temperature, high/low temperature cycling, and long-term low-temperature storage, to assess its compressive and tensile properties, revealing the variation patterns of thermal conductivity and linear expansion coefficients. Results illustrated that the mechanical properties of the VIP significantly improve at -80 ℃, with compressive strength and compression modulus increasing to approximately 104.60% and 107.04% of those at room temperature, respectively. Additionally, tensile strength and tensile modulus reach 2.12 times and 3.04 times those at room temperature. After undergoing high/low temperature cycling and extended periods of low-temperature storage, the VIP's compressive strength and compression mo-dulus generally trend upwards, evidencing its excellent adaptability to diverse environments and long-term stability. This space-grade VIP successfully fulfills the rigorous demands of space stations for low thermal conductivity, high strength, minimal deformation, and durability, and has been effectively implemented in orbital operations, demonstrating its viability and potential for broader aerospace applications.
Key words:  vacuum insulation panel    space environment    low temperature    thermology    mechanical property
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TB332  
通讯作者:  *艾素芬,博士,北京卫星制造厂有限公司研究员、研究生导师。目前主要从事航天高性能功能材料、纳米多孔隔热材料等方面的研究。sufenai529s@163.com   
作者简介:  靳楠,博士,北京卫星制造厂有限公司工程师。目前主要从事航天领域高性能结构与功能材料的开发及应用方面的研究。
引用本文:    
靳楠, 赵婉彤, 孟博, 艾素芬, 刘佳, 陈照峰, 杨丽霞. 空间超低温真空绝热板的热-力学性能研究[J]. 材料导报, 2025, 39(18): 24070067-5.
JIN Nan, ZHAO Wantong, MENG Bo, AI Sufen, LIU Jia, CHEN Zhaofeng, YANG Lixia. Study on the Thermal-Mechanical Properties of Space Ultra Low Temperature Vacuum Insulation Panel. Materials Reports, 2025, 39(18): 24070067-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070067  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24070067
1 Cuce E, Cuce P M, Wood C J, et al. Renewable and Sustainable Energy Reviews, 2014, 34, 273.
2 Bheekhun N, AbuTalib A R, Hassan M R. Advances in Materials Science and Engineering, 2013, 2013, 18.
3 Smirnova I, Gurikov P. Journal of Supercritical Fluids, 2017, 134, 228.
4 Koebel M, Rigacci A, Achard P. Journal of Sol-Gel Science and Technology, 2012, 63, 315.
5 Rasky D J, Milos F S, Squire T H. Journal of Spacecraft and Rockets, 2015, 38, 294.
6 Yu Q H. The research on the performance of vacuum insulation panel with glass fiber/fumed silica hybrid core material. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2021(in Chinese).
余倩华. 玻璃纤维气相二氧化硅复合芯材真空绝热板性能研究. 硕士学位论文, 南京航空航天大学, 2021.
7 Thiessen S, Knabben F T, Melo C, et al. International Journal of Refri-geration, 2018, 96, 10.
8 Zheng Q R, Zhu Z W, Chen J, et al. Vacuum, 2017, 146, 111.
9 Bouquerel M, Duforestel T, Baillis D, et al. Energy and Buildings, 2012, 55, 903.
10 Kwon J S, Jang C H, Jung H, et al. International Journal of Heat and Mass Transfer, 2009, 52, 5525.
11 Kim J, Song T H. International Journal of Heat and Mass Transfer, 2013, 64, 783.
12 Li H Q. Preparation, performance and aging behavior study of VIP-based composites. Master's Thesis, Southeast University, China, 2015 (in Chinese).
李会强. 高性能VIP基材料的制备技术、性能及老化行为研究. 硕士学位论文, 东南大学, 2015.
13 Neugebauer A, Chen K, Tang A, et al. Energy and Buildings, 2014, 79, 47.
14 Brunner S, Simmler H. Vacuum, 2008, 82(7), 700.
15 Li C D, Chen Z F, Wu W P, et al. Applied Mechanics and Materials, 2012, 174-177, 1437.
16 Prociak A, Pielichowski J. Polimery, 2005, 50(9), 682.
17 Jung H, Jang C H, Yeo I S, et al. International Journal of Heat and Mass Transfer, 2013, 56, 436.
18 Ai S F, Wang S, Yang G X, et al. Journal of Beijing University of Che-mical technology, 2023, 50(1), 65(in Chinese).
艾素芬, 王帅, 杨庚翔, 等. 北京化工大学学报, 2023, 50(1), 65.
19 Wang Y H, Tian F J, Xiao C F, et al. Fiber Composites, 2023(3), 22(in Chinese).
王雨杭, 田富竞, 肖楚璠, 等. 纤维复合材料, 2023(3), 22.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 谢志翔, 彭溢源, 刘汉语, 朱嗣承, 陈婷. 离子液体辅助水热法制备BiVO4黄色色料及色度研究[J]. 材料导报, 2025, 39(7): 24010243-5.
[13] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[14] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[15] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed