Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24070137-6    https://doi.org/10.11896/cldb.24070137
  高分子与聚合物基复合材料 |
联苯芳香酯型液晶环氧树脂制备及性能研究
宋伟1,2,*, 范吉轩1,2, 李琳3, 冯景涛4, 宋文宏1,2, 彭修峰1,2, 苟萌萌1,2, 朱立鹏1,2
1 哈尔滨理工大学电气与电子工程学院,哈尔滨 150086
2 哈尔滨理工大学工程电介质及其应用教育部重点实验室,哈尔滨 150086
3 国网黑龙江省电力有限公司电力科学研究院,哈尔滨 150040
4 上海拜高迈道技术有限公司,上海 201400
Study on the Preparation and Properties of Biphenyl Liquid Crystal Epoxy Resin
SONG Wei1,2,*, FAN Jixuan1,2, LI Lin3, FENG Jingtao4, SONG Wenhong1,2, PENG Xiufeng1,2, GOU Mengmeng1,2, ZHU Lipeng1,2
1 School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150086, China
2 Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150086, China
3 State Grid Heilongjiang Electric Power Company Electric Power Research Institute, Harbin 150040, China
4 Shanghai Baigao Maidao Technology Co., Ltd., Shanghai 201400, China
下载:  全 文 ( PDF ) ( 16521KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着科技的进步,电子器件向大功率、小型化、密集型方向发展,电子封装材料的导热性能显得尤为重要。本研究基于分子链液晶基元和拓扑结构的优化调控,合成了具有液晶性的联苯芳香酯型液晶化合物与环氧树脂复合材料,并对其综合性能进行研究。利用4,4′-二羟基联苯与3,5-二羟基苯甲酸为反应原料,通过酯化、环氧化反应制得联苯芳香酯型液晶环氧树脂单体(LCER);在固化剂甲基六氢苯酐及促进剂DMP-30的作用下,制备了LCER/E-51复合材料,分析了LCER的分子结构、液晶特性与复合材料的导热性能、力学性能和绝缘性能。测试结果表明,在保证绝缘性能不下降的前提下,LCER的引入能够提升基体E-51的导热性能与力学性能。随着LCER含量的增加,复合材料的热导率也提升,当LCER质量分数为20%时,复合材料的热导率提升了135%。复合材料的冲击强度、弯曲强度及拉伸强度都随LCER含量的增加呈现先增后减的变化趋势,当LCER质量分数为12%时,其数值分别提升了72%、15%、8%。LCER/E-51复合材料的体积电阻率与交流击穿场强最高提升率分别为69.8%、19.8%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋伟
范吉轩
李琳
冯景涛
宋文宏
彭修峰
苟萌萌
朱立鹏
关键词:  环氧树脂  液晶结构  热导率  力学性能  绝缘性能  交联网络    
Abstract: With the progress of science and technology, electronic devices are developing in the direction of high power, miniaturization and intensive type, and the thermal conductivity of electronic packaging materials is particularly important. Based on the optimized regulation of molecular chain liquid crystal mesogen and topological structure, this study synthesized biphenyl aromatic ester-type liquid crystal compound and epoxy resin composite materials with liquid crystalline properties, and investigated their comprehensive performance. Biphenyl aromatic ester liquid crystal epoxy resin monomer (LCER) was prepared by esterification and epoxidation reaction using 4, 4′-dihydroxy biphenyl and 3, 5-dihydroxybenzoic acid as reaction raw materials. LCER/E-51 composites were prepared under the action of the curing agent methyl hexahydro phthalic anhydride and the accelerator DMP-30, and the molecular structure, liquid crystal properties of LCER and thermal conductivity, mechanical properties and insulation properties of the composites were analyzed. The test results show that the synthesized LCER has liquid crystal performance, and the introduction of LCER can improve the thermal conductivity and mechanical properties of the matrix E-51 if the insulation performance is not decreased. As the LCER content increases, the thermal conductivity of the composite also increases, increasing by 135% when the LCER mass fraction is 20%. The impact strength, bending strength and tensile strength of composite materials all increase first and then decrease with the increase of LCER content. When the LCER content was 12%, the values increased by 72%, 15% and 8% respectively. The volume resistivity and AC breakdown field strength of LCER/E-51 composites were 69.8% and 19.8% respectively.
Key words:  epoxy resin    liquid crystal structure    thermal conductivity    mechanical property    insulation property    cross-linked networks
发布日期:  2025-08-28
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51607048);工程电介质及其应用教育部重点实验室开放课题基金(KMF202401);黑龙江省省属本科高校“优秀青年教师基础研究支持计划”(YQJH2023265)
通讯作者:  *宋伟,博士,哈尔滨理工大学电气与电子工程学院教授、博士研究生导师。目前主要从事新型聚合物电工绝缘材料与测试技术、储能技术应用与新能源材料的开发等方面的研究工作。sw7912@hrbust.edu.cn   
引用本文:    
宋伟, 范吉轩, 李琳, 冯景涛, 宋文宏, 彭修峰, 苟萌萌, 朱立鹏. 联苯芳香酯型液晶环氧树脂制备及性能研究[J]. 材料导报, 2025, 39(17): 24070137-6.
SONG Wei, FAN Jixuan, LI Lin, FENG Jingtao, SONG Wenhong, PENG Xiufeng, GOU Mengmeng, ZHU Lipeng. Study on the Preparation and Properties of Biphenyl Liquid Crystal Epoxy Resin. Materials Reports, 2025, 39(17): 24070137-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070137  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24070137
1 Wan Y J, Li G, Yao Y M, et al. Composites Communications, 2020, 19, 154.
2 Na T, Che S, Sun Y, et al. Journal of Applied Polymer Science, 2019, 136(7), 47078.
3 Wang W, Zhou W Y, Cao D, et al. Acta Materiae Compositae Sinica, 2022, 39(5), 2060(in Chinese).
王蕴, 周文英, 曹丹, 等. 复合材料学报, 2022, 39(5), 2060.
4 Youngsu K, Jin J, Hyeonuk Y, et al. Composites Research, 2017, 30(1), 1.
5 Zhong X, Meng X D, Zhang R H, et al. Acta Materiae Compositae Sinica, 2019, 36(11), 2644(in Chinese)
钟洨, 孟旭东, 张睿涵, 等. 复合材料学报, 2019, 36(11), 2644.
6 Fu Y X, He Z X, Mo D C, et al. Applied Thermal Engineering, 2014, 66(1-2), 493.
7 Jeong I, Kim B C, Kang D, et al. Journal of Polymer Science, Part A. Polymer Chemistry, 2019, 57(6), 708.
8 Zheng X, Liu R H, Chu D S, et al. Modern Chemical Research, 2022(24), 73(in Chinese).
郑欣, 刘荣海, 初德胜, 等. 当代化工研究, 2022(24), 73.
9 Chen M H, Meng H Y, Li Y, et al. Proceedings of the CSEE, 2023, 43(17), 6895(in Chinese).
陈明华, 孟宏远, 李誉, 等. 中国电机工程学报, 2023, 43(17), 6895.
10 Chai H, Wang X, Yang X, et al. Polymers for Advanced Technologies, 2022, 33(1), 380.
11 Windberger M S, Dimitriou E, Rendl S, et al. Polymers, 2020, 13(1), 65.
12 Kisiel M, Mossety-Leszczak B. European Polymer Journal, 2020, 124, 109507. .
13 Zhang X C. Synthesisi, preparation and propertiesof two biphenyl liquid crystal epoxy resins. Master's Thesis, Beijing University of Chemical Technology, China, 2022(in Chinese).
张新超. 联苯基液晶环氧树脂的制备及其性能研究. 硕士学位论文, 北京化工大学, 2022.
14 Kondic L, Cummings L J. Current Opinion in Colloid & Interface Science, 2021, 55, 101478.
15 Pan H M, Dong Q F, Yang L F, et al. Paint & Coatings Industry, 2024, 54(6), 82(in Chinese).
潘红梅, 董群锋, 杨立峰, 等. 涂料工业, 2024, 54(6), 82.
16 Chen H, Huang Z W, Zhao W, et al. Acta Materiae Compositae Sinica, 2024, 41(5), 2477(in Chinese).
陈昊, 黄紫微, 赵伟, 等. 复合材料学报, 2024, 41(5), 2477.
17 Miguel C, Heino F, Peter P, et al. Nature Materials, 2004, 3(5), 307.
18 Wang H X. Construction method of boron nitride orientation heat conduction network in diphenyl liquid crystal modified epoxy resin. Master's Thesis, Chongqing University, China, 2020(in Chinese).
汪瀚湘. 联苯型液晶改性环氧树脂中氮化硼取向导热网络构建方法. 硕士学位论文, 重庆大学, 2020.
19 Yang X T, Zhong X, Zhang J, et al. Journa of Materials Science & Technology, 2021, 68, 209.
20 Zhu L W, Li J D, Liu J X, et al. New Chemical Materials, 2022, 50(12), 6(in Chinese).
祖立武, 李纪东, 刘嘉欣, 等. 化工新型材料, 2022, 50(12), 6.
21 Ruan K, Zhong X, Shi X, et al. Materials Today Physics, 2021, 20, 100456.
22 Yu Z H, Han Y. China Rubber/Plastics Technology and Equipment, 2024, 50(3), 36(in Chinese).
于智鸿, 韩悦. 橡塑技术与装备, 2024, 50(3), 36.
23 Chen W, Yu Y, Gu Y, et a. Composites Part A:Applied Science and Manufacturing, 2022, 154, 106783.
24 Akatsuka M, Takezawa Y. Journal of Applied Polymer Science, 2010, 89(9), 2464.
25 Harada M, Morioka D, Ochi M. Journal of Applied Polymer Science, 2018, 135(16), 46181.
26 Liu X J, Rao Z. Computational Materials Science, 2020, 172, 109298.
27 Gantenbein S, Masania K, Woigk W, et al. Nature, 2018, 561(7722), 226.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed