Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24080046-12    https://doi.org/10.11896/cldb.24080046
  高分子与聚合物基复合材料 |
纳米纤维素在相变储能领域的应用研究进展
王汇杰1, 胡江涛2, 盖晓倩1, 刘馨蔓1, 李仁爱1, 肖惠宁3, 刘超1,*
1 南京林业大学江苏省林业资源高效加工利用协同创新中心林产化学与材料国际创新高地,南京 210037
2 安徽华邦古楼新材料有限公司,安徽 黄山 245200
3 纽布伦斯威克大学化学工程系,加拿大 弗雷德里克顿 E3B 5A3
Advancements in the Utilization of Nanocellulose for Phase Change Energy Storage Applications
WANG Huijie1, HU Jiangtao2, GAI Xiaoqian1, LIU Xinman1, LI Ren’ai1, XIAO Huining3, LIU Chao1,*
1 Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
2 Anhui Huabang Gulou New Materials Co., Ltd., Huangshan 245200, Anhui, China
3 Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada
下载:  全 文 ( PDF ) ( 37299KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米纤维素作为一种新型生物基功能材料,因优异的力学性能、纳米特性和绿色环保特性,在解决相变储能材料液相泄漏问题上展现出巨大潜力。本文首先系统地梳理了相变储能材料的基本原理和多样化的分类体系,综述了纳米纤维素的制备方法以及在相变储能材料中的研究进展,主要包括纳米纤维素微胶囊基相变储能材料和纳米纤维素气凝胶基相变储能材料及其导热增强机制,最后总结了纳米纤维素在相变储能领域的研究重点并展望了未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王汇杰
胡江涛
盖晓倩
刘馨蔓
李仁爱
肖惠宁
刘超
关键词:  相变储能材料  纳米纤维素  微胶囊  气凝胶  生物质材料    
Abstract: Nanocellulose, as an innovative bio-based functional material, demonstrates significant potential in addressing the issue of liquid phase lea-kage in phase-change energy storage materials due to its exceptional mechanical properties, nanoscale characteristics, and environmentally friendly nature. This review first systematically elucidates the fundamental principles and diverse classification systems of phase-change energy storage materials. It subsequently focuses on the fabrication techniques of nanocellulosic materials and the advancements in phase-change energy storage materials research, encompassing nanocellulosic microencapsulated phase change energy storage materials as well as nanocellulosic aerogel-based phase change energy storage materials along with their mechanisms for enhancing thermal conductivity. It ends with a comprehensive overview of the focal points and future trends of nanocellulose within the realm of phase-change energy storage.
Key words:  phase change material    nanocellulose    microcapsule    aerogel    biomass material
出版日期:  2025-08-25      发布日期:  2025-08-15
ZTFLH:  TB324  
基金资助: 国家自然科学基金(22208161)
通讯作者:  刘超,南京林业大学轻工与食品学院副教授、硕士研究生导师。2021年6月于华南理工大学制浆造纸工程专业获工学博士学位。主要从事面向可持续应用的生物质基衍生多功能材料的研究。chaoliulc@njfu.edu.cn   
作者简介:  王汇杰,2023年6月于南京林业大学获工学学士学位,现为南京林业大学轻工与食品学院硕士研究生,主要研究领域为纳米纤维素基功能材料。
引用本文:    
王汇杰, 胡江涛, 盖晓倩, 刘馨蔓, 李仁爱, 肖惠宁, 刘超. 纳米纤维素在相变储能领域的应用研究进展[J]. 材料导报, 2025, 39(16): 24080046-12.
WANG Huijie, HU Jiangtao, GAI Xiaoqian, LIU Xinman, LI Ren’ai, XIAO Huining, LIU Chao. Advancements in the Utilization of Nanocellulose for Phase Change Energy Storage Applications. Materials Reports, 2025, 39(16): 24080046-12.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080046  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24080046
1 Armaroli N, Balzani V. Angewandte Chemie International Edition, 2007, 46(1-2), 52.
2 Sun Q, Zhang H, Xue J, et al. Chemical Engineering Journal, 2018, 353, 920.
3 Sawyer R F. Proceedings of the Combustion Institute, 2009, 32(1), 45.
4 Cabeza L F, De Gracia A, Zsembinszki G, et al. Energy, 2021, 231, 120943.
5 Shen Z H, Qin M L, Xiong F, et al. Energy & Environmental Science, 2023, 16(3), 830.
6 Ghaib K. ChemBioEng Reviews, 2017, 4(4), 215.
7 Fleuchaus P, Godschalk B, Stober I, et al. Renewable and Sustainable Energy Reviews, 2018, 94, 861.
8 Xu J, Wang R Z, Li Y. Solar Energy, 2014, 103, 610.
9 Pinel P, Cruickshank C A, Beausoleil-Morrison I, et al. Renewable and Sustainable Energy Reviews, 2011, 15(7), 3341.
10 Singh P, Sharma R K, Ansu A K, et al. Solar Energy Materials and Solar Cells, 2021, 223, 110955.
11 Zhou D, Zhao C Y, Tian Y. Applied Energy, 2012, 92, 593.
12 Umair M M, Zhang Y, Iqbal K, et al. Applied Energy, 2019, 235, 846.
13 Cheng X L, Mu R, Sun T, et al. Materials Reports, 2024, 38(5), 73 (in Chinese).
成鑫磊, 穆锐, 孙涛, 等. 材料导报, 2024, 38(5), 73.
14 Lei C, Wu K, Wu L, et al. Journal of Materials Chemistry A, 2019, 7(33), 19364.
15 Ismail K A R, Lino F A M, Machado P L O, et al. Journal of Energy Storage, 2022, 53, 105202.
16 Gupta B, Bhalavi J, Sharma S, et al. Materials Today Proceedings, 2021, 46, 5550.
17 Prajapati D G, Kandasubramanian B. Polymer Reviews, 2020, 60(3), 389.
18 Cai R, Sun Z, Yu H, et al. Journal of Building Engineering, 2021, 35, 101979.
19 Xiao L G, Li H. New Chemical Materials, 2024(4), 228 (in Chinese).
肖力光, 李赫. 化工新型材料, 2024(4), 228.
20 Wang Z F, Chen M J, Ma Y, et al. International Journal of Applied Ceramic Technology, 2017, 14(1), 3.
21 Fernández A I, Barreneche C, Belusko M, et al. Solar Energy Materials and Solar Cells, 2017, 171, 275.
22 Rao Z, Wang S, Wu M, et al. Energy Conversion and Management, 2012, 64, 152.
23 Zhang Y, Wang L, Tang B, et al. Applied Energy, 2016, 184, 241.
24 Hagelstein G, Gschwander S. International Journal of Refrigeration, 2017, 84, 67.
25 Jelle B P, Kalnæs S E. Cost-effective energy efficient building retrofitting, Woodhead Publishing, UK, 2017, pp. 57.
26 Nazir H, Batool M, Bolivar Osorio F J, et al. International Journal of Heat and Mass Transfer, 2019, 129, 491.
27 Wang W K, Dong Z, Lai Y H, et al. Refrigeration & Air Conditioning, 2020, 34(1), 91.
王文楷, 董震, 赖艳华, 等. 制冷与空调(四川), 2020, 34(1), 91.
28 Kong W, Fu X, Liu Z, et al. Applied Thermal Engineering, 2017, 117, 622.
29 Chandra D, Chellappa R, Chien W M. Journal of Physics and Chemistry of Solids, 2005, 66(2), 235.
30 Huang X, Chen X, Li A, et al. Chemical Engineering Journal, 2019, 356, 641.
31 Giro-Paloma J, Martínez M, Cabeza L F, et al. Renewable and Sustai-nable Energy Reviews, 2016, 53, 1059.
32 Purushotham P, Ho R, Zimmer J. Science, 2020, 369(6507), 1089.
33 Klemm D, Heublein B, Fink H P, et al. Angewandte Chemie International Edition, 2005, 44(22), 3358.
34 Tavakolian M, Jafari S M, Van De Ven T G M. Nano-Micro Letters, 2020, 12(1), 73.
35 Dufresne A. Materials Today, 2013, 16(6), 220.
36 Trache D, Tarchoun A F, Derradji M, et al. Frontiers in Chemistry, 2020, 8, 392.
37 Du H, Liu W, Zhang M, et al. Carbohydrate Polymers, 2019, 209, 130.
38 Liu Z Z, Bai Y, Sun W L, et al. New Chemical Materials, 2022, 50(7), 1 (in Chinese).
刘中正, 白雨, 孙文丽, 等. 化工新型材料, 2022, 50(7), 1.
39 Hoeng F, Denneulin A, Bras J. Nanoscale, 2016, 8(27), 13131.
40 Do T V V, Tran N B A, Nguyen-Thai N U. Polymer Composites, 2023, 44(4), 2287.
41 Gómez H C, Serpa A, Velásquez-Cock J, et al. Food Hydrocolloids, 2016, 57, 178.
42 Li F, Mascheroni E, Piergiovanni L. Packaging Technology and Science, 2015, 28(6), 475.
43 Li C L, Shen C Y, Yang Y, et al. Materials Reports, 2025, 39(7), 249 (in Chinese).
李翠利, 申纯宇, 杨英, 等. 材料导报, 2025, 39(7), 249.
44 Blanco A, Monte M C, Campano C, et al. Handbook of nanomaterials for industrial applications, Elsevier, US, 2018, pp. 74.
45 Chu Y, Sun Y, Wu W, et al. Carbohydrate Polymers, 2020, 250, 116892.
46 Thomas B, Raj M C, B A K, et al. Chemical Reviews, 2018, 118(24), 11575.
47 Xie H, Du H, Yang X, et al. International Journal of Polymer Science, 2018, 2018(1), 7923068.
48 Zhang J, Xu C, Zhang Y, et al. Journal of South China University of Technology (Natural Seience Edition), 2019, 47(9), 121 (in Chinese).
张俊, 许超, 张宇, 等. 华南理工大学学报(自然科学版), 2019, 47(9), 121.
49 Liu C, Li B, Du H, et al. Carbohydrate Polymers, 2016, 151, 716.
50 Yan X, Tao Y, Qian X. Polymers, 2020, 12(10), 2366.
51 Sivanathan A, Dou Q, Wang Y, et al. Nanotechnology Reviews, 2020, 9(1), 896.
52 Li Z, Zhou M, Wu F, et al. International Journal of Pharmaceutics, 2019, 564, 10.
53 Ishak S, Mandal S, Lee H S, et al. Scientific Reports, 2020, 10(1), 15023.
54 Lei K, Wang S, Wang Z, et al. Composites Part A-Applied Science and Manufacturing, 2023, 168, 107480.
55 Li C, He G, Yan H, et al. Energy Procedia, 2018, 152, 390.
56 Lashgari S, Arabi H, Mahdavian A R, et al. Applied Energy, 2017, 190, 612.
57 Dorieh A, Farajollah P M, Ghafari M S, et al. Progress in Organic Coatings, 2022, 165, 106768.
58 Wang X G, Lei W Y, Zhu J L, et al. Materials Reports, 2023, 37(20), 198 (in Chinese).
王信刚, 雷为愉, 朱街禄, 等. 材料导报, 2023, 37(20), 198.
59 Cárdenas-Ramírez C, Jaramillo F, Gómez M. Journal of Energy Storage, 2020, 30, 101495.
60 Wang X, Yin H, Chen Z, et al. Materials Today Communications, 2020, 22, 100854.
61 Zuo J, Zhan J, Luo C, et al. Advanced Powder Technology, 2017, 28(11), 2805.
62 Xing J, Zhou Y, Yang K, et al. Journal of Energy Storage, 2021, 34, 101998.
63 Trivedi G V N, Parameshwaran R. Materials Chemistry and Physics, 2020, 242, 122519.
64 Cho J S, Kwon A, Cho C G. Colloid and Polymer Science, 2002, 280(3), 260.
65 Lee J, Park S J, Park C S, et al. Polymers (Basel), 2018, 10(6), 675.
66 Wang K, Yan T, Meng L, et al. Solar RRL, 2023, 7(22), 2300447.
67 Şahan N, Paksoy H. International Journal of Energy Research, 2020, 44(5), 3922.
68 Li M, Liu J, Shi J. Solar Energy, 2018, 167, 158.
69 Zhang Y, Tao W, Wang K, et al. Renewable Energy, 2020, 149, 400.
70 Tian Y, Liu Y, Zhang L, et al. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2020, 586, 124216.
71 Arshad A, Jabbal M, Yan Y, et al. International Journal of Energy Research, 2019, 43(11), 5572.
72 Bakeshlou Z, Nikfarjam N. Industrial & Engineering Chemistry Research, 2020, 59(46), 20253.
73 Salas C, Nypelö T, Rodriguez-Abreu C, et al. Current Opinion in Colloid & Interface Science, 2014, 19(5), 383.
74 Dai H, Wu J, Zhang H, et al. Trends in Food Science & Technology, 2020, 102, 16.
75 Zhang Z, Zhang Z, Chang T, et al. Chemical Engineering Journal, 2022, 428, 131164.
76 Samanta A, Nechyporchuk O, Bordes R. Carbohydrate Polymers, 2023, 312, 120734.
77 Zhang B, Zhang Z, Kapar S, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(21), 17756.
78 Liu W, Lin Q, Chen S, et al. Advanced Composites and Hybrid Materials, 2023, 6(4), 149.
79 Zheng Y, Zhu Y, Yu Z, et al. Composites Part B-Engineering, 2022, 247, 110332.
80 Brinchi L, Cotana F, Fortunati E, et al. Carbohydrate Polymers, 2013, 94(1), 154.
81 Wang X, Yu K, An R, et al. Carbohydrate Polymers, 2019, 207, 694.
82 Shi X, Yazdani M R, Ajdary R, et al. Carbohydrate Polymers, 2021, 254, 117279.
83 Mekonnen B T, Ding W, Liu H, et al. Journal of Leather Science and Engineering, 2021, 3(1), 25.
84 Li L, Lu F, Wang C, et al. Journal of Materials Chemistry A, 2018, 6(47), 24468.
85 Usov I, Nyström G, Adamcik J, et al. Nature Communications, 2015, 6, 7564.
86 Ahankari S, Paliwal P, Subhedar A, et al. ACS Nano, 2021, 15(3), 3849.
87 Song M, Jiang J, Zhu J, et al. Carbohydrate Polymers, 2021, 272, 118460.
88 Luo Y, Xie Y, Jiang H, et al. Chemical Engineering Journal, 2021, 420, 130466.
89 Wang X, Zhang Y, Jiang H, et al. Materials Letters, 2016, 183, 17.
90 El-Naggar M E, Othman S I, Allam A A, et al. International Journal of Biological Macromolecules, 2020, 145, 1115.
91 Xiao H, Lv J B, Tan W, et al. Chemical Engineering Journal, 2022, 450, 138344.
92 Liu C, Huang C, Li Y, et al. International Journal of Biological Macromolecules, 2023, 252, 126370.
93 Liu P, Gao H, Chen X, et al. Composites Part B-Engineering, 2020, 195, 108072.
94 Wang H, Deng Y, Liu Y, et al. Composites Part A-Applied Science and Manufacturing, 2022, 155, 106853.
95 Wang H, Deng Y, Wu F, et al. Solar Energy Materials and Solar Cells, 2021, 230, 111236.
96 Feng D, Feng Y, Qiu L, et al. Renewable and Sustainable Energy Reviews, 2019, 109, 578.
97 Li A, Wang J, Dong C, et al. Applied Energy, 2018, 217, 369.
98 Huang X, Liu Z, Xia W, et al. Journal of Materials Chemistry A, 2015, 3(5), 1935.
99 Shao G, Hanaor D A H, Shen X, et al. Advanced Materials, 2020, 32(17), 1907176.
100 Lee G S, Yun T, Kim H, et al. ACS Nano, 2020, 14(9), 11722.
101 Du X, Wang J, Jin L, et al. ACS Applied Materials & Interfaces, 2022, 14(13), 15225.
102 Xin W, Ma M G, Chen F. ACS Applied Nano Materials, 2021, 4(7), 7234.
103 Huang X, Alva G, Liu L, et al. Applied Energy, 2017, 200, 19.
104 Papageorgiou D G, Kinloch I A, Young R J. Progress in Materials Science, 2017, 90, 75.
105 Balandin A A. Nature Materials, 2011, 10(8), 569.
106 Wu G Z. Preparation and photothermal utilization of functionalized cellulose-based composite phase change materials. Master’s Thesis, Shanghai Polytechnic University, China, 2022 (in Chinese).
吴官正. 功能化纤维素基相变储能复合材料的制备及光热利用. 硕士学位论文, 上海第二工业大学, 2022.
107 Du X, Qiu J, Deng S, et al. ACS Applied Materials & Interfaces, 2020, 12(5), 5695.
108 Tong X, Li N, Zeng M, et al. Renewable and Sustainable Energy Reviews, 2019, 108, 398.
109 Du X, Zhou M, Deng S, et al. Cellulose, 2020, 27(8), 4679.
110 Xue F, Jin X Z, Wang W Y, et al. Nanoscale, 2020, 12(6), 4005.
111 Shen H, Guo J, Wang H, et al. ACS Applied Materials & Interfaces, 2015, 7(10), 5701.
112 Roy S, Zhang X, Puthirath A B, et al. Advanced Materials, 2021, 33(44), 2101589.
113 Yan Q, Dai W, Gao J, et al. ACS Nano, 2021, 15(4), 6489.
114 Wan L, Liu C, Cao D, et al. ACS Applied Polymer Materials, 2020, 2(7), 3001.
[1] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[2] 龙勇, 王宇, 刘天乐, 王亚洲. 相变微胶囊保温砂浆的制备及性能[J]. 材料导报, 2024, 38(9): 22110170-6.
[3] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[4] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[5] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[6] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[7] 李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
[8] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[9] 龙娟, 李宇展, 李志强, 钟土华. 纳米纤维素的点击反应改性及应用研究进展[J]. 材料导报, 2024, 38(17): 23050159-10.
[10] 穆锐, 刘元雪, 欧忠文, 胡志德, 姚未来, 成鑫磊, 雷屹欣, 杨秀明. 气凝胶复合材料的制备及保温隔热应用进展[J]. 材料导报, 2024, 38(14): 22110298-14.
[11] 张思钊, 刘淳, 姜勇刚, 冯坚. 聚酰亚胺气凝胶的耐高温性能研究进展[J]. 材料导报, 2024, 38(13): 23040260-11.
[12] 黄少炎, 修慧娟, 王志雄, 樊莎, 王思敏, 邓自立, 李娜, 李金宝. 纳米纤维素基复合材料在锂硫电池中的应用研究进展[J]. 材料导报, 2024, 38(12): 22120181-6.
[13] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[14] 刘晓英, 阮文琳, 张育新, 饶劲松, 尹长青, 张贤明, 柳云骐. 无机-有机杂化微胶囊:制备技术及在抗磨耐腐蚀涂层中的应用[J]. 材料导报, 2023, 37(9): 21060113-9.
[15] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed